Stony Brook University  
The Graduate School  

Doctoral Defense Announcement  

Abstract  
Aspects of Supersymmetric Field Theories and Complex Geometry  

By  
Patricio Marcos Crichigno  

In this thesis we study various aspects of supersymmetric quantum field theory and complex geometry. We focus on three main aspects. The first is general N=(2,2) gauged linear sigma models involving semichiral fields. We show that integrating out the semichiral vector multiplet leads to the generalized potential for a hyperkahler manifold, providing a formulation of the hyperkahler quotient in a generalized setting. We then discuss a new quotient construction which leads to non-Kahler manifolds. The second problem we study is motivated by recent developments in the study of the Coulomb branch of supersymmetric theories with a hyperkahler moduli space. A crucial element in these developments is the expression for Darboux coordinates in the hyperkahler manifold. We give a simple derivation of this expression by using projective superspace techniques and we apply this to the study of the moduli space of theories with eight supercharges on S^3xS^1 and S^3xT^2. Finally, we study the partition function of three-dimensional Chern-Simons theories on S^3 with affine ADE quivers. We give a general formula for the partition function of affine D-type quivers in terms of the Chern-Simons levels, providing a prediction for an infinite family of tri-Sasaki Einstein metrics describing the gravitational duals of such field theories. We will comment on some of these developments as well as work in progress.

**Date:** July 26th, 2013  
**Program:** Physics  
**Time:** 2:00pm  
**Dissertation Advisor:** Martin Rocek  
**Place:** YITP Common Room