Stony Brook University
The Graduate School

Doctoral Defense Announcement

Abstract

A first-principles study of structural, electronic and optical properties of
GaN, ZnO and (GaN)_{1-x}(ZnO)_{x}

By
Jian Liu

GaN and ZnO have spontaneous polarizations comparable with those of ferroelectric
materials. Pyroelectricity, namely the temperature dependence of the spontaneous
polarization, has not been investigated at the first-principles level. The theory of
pyroelectricity is discussed in detail. Through first-principles calculations, I show that
anharmonic internal displacement and thermal expansion contribute the major part of the
pyroelectricity. An efficient way of calculating third-order force constants at zone-center
using the dynamical matrix is proposed.

The semiconductor alloy (GaN)_{1-x}(ZnO)_{x} shows improved water-splitting efficiency
(compared with the pure “end-member” compounds) under visible light illumination. Its
main advantage lies in the reduced band gap. We perform Monte-Carlo simulations on a
first-principles-based cluster-expansion model to show the existence of short-range order
(SRO). We construct the “special quasi-ordered structures” to faithfully include SRO.
Subsequent first-principles calculations reveal significant influence of SRO on the structural,
electronic and optical properties of (GaN)_{1-x}(ZnO)_{x} alloy. The role of SRO in the band-gap
reduction is explained.

Date: Dec 10, 2015
Time: 3:30 pm
Place: Physics, B-131

Program: Condensed-matter theory
Dissertation Advisor: Philip B. Allen