
Worldgraph Approach to Amplitudes

A Dissertation Presented

by

Peng Dai

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Physics

Stony Brook University

December 2009



Stony Brook University

The Graduate School

Peng Dai

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

Warren Siegel - Advisor
Professor, Department of Physics and Astronomy

Peter van Nieuwenhuizen - Chairperson of Defense
Professor, Department of Physics and Astronomy

Roderich Engelmann
Professor, Department of Physics and Astronomy

Martin Rocek
Professor, Department of Physics and Astronomy

Leonardo Rastelli
Professor, Department of Physics and Astronomy

Eugene Feinberg
Professor, Department of Applied Mathematics and Statistics, Stony Brook

University

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii



Abstract of the Dissertation

Worldgraph Approach to Amplitudes

by

Peng Dai

Doctor of Philosophy

in

Physics

Stony Brook University

2009

String theory uses the first-quantized method (quantum mechan-

ics) to derive scattering amplitudes. External states are considered

as vertex operators inserted on the worldsheet generated by an in-

ternal string and the amplitudes are calculated perturbatively by

calculating vacuum expectation values (vevs) of these vertex op-

erators on worldsheets with different topologies. This approach is

different from the common approach of particle theories in which

the second-quantized method (quantum field theory) is adopted to

calculate amplitudes. A natural question to ask is whether there

exists a first-quantization formalism for particles that gives particle

amplitudes to all orders. This thesis presents the recent research

in answering this question.

In the first-quantized approach for particles, amplitudes are con-

sidered as the vevs of vertex operators inserted on different graphs

generated by an internal particle. I refer to these graphs as world-

graphs and first-quantized approach for particles as worldgraph ap-
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proach. To evaluate these vevs, vertex operators for several exter-

nal states and Green functions on different worldgraphs are needed.

In this thesis, various vertex operators are considered and a general

method to obtain scalar Green functions on different worldgraphs

is obtained. Some examples of the worldgraph approach to ampli-

tudes in scalar theory and Yang-Mills theory are presented.
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Chapter 1

Worldgraph method

1.1 Introduction

The so-called worldgraph approach to amplitudes we will develop in this thesis

represents the unrenormalized scattering amplitudes at a certain loop level

by a first-quantized path integral, namely a quantum mechanical transition

probability. The idea, to our knowledge, was first suggested by Feynman [1],

Nambu [2] and Schwinger [3] in as early as the 1950’s. However, it was not

developed much over the following 20 years. There are mainly two reasons

for this. (1) It is limited to dealing with tree and 1-loop amplitudes. A

tree amplitude can be considered as a particle moving through a series of

potentials and a 1-loop amplitude can be considered as a particle moving

through potentials and going back to its starting point. On the other hand,

higher loop amplitudes are obviously more difficult to fit in this framework.

(2) The quantum theory of fields (second-quantized method) was invented and

gave an general way of constructing a theory and calculating its scattering

amplitudes to all orders.

String theory has revived the development of the first-quantized method,

as it uses first-quantization as a key method to calculate the string scattering

amplitudes [4] and this calculation can be carried out, in principle, at all loop

levels (for a review see [5]). Here a string scattering amplitude is represented

by a path integral of fields living on the worldsheet with vertex operators (rep-

resenting the external lines) inserted. The method is not limited to calculating

only tree and 1-loop amplitudes, because string amplitudes at different loop
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levels are characterized by integration over worldsheet with different topolo-

gies in the action. The first-quantized method in string theory is much more

tractable than the method given by a (second-quantized) string field theory,

where infinite number of graphs need to be calculated to recover one single

amplitude given by the first-quantized method. In fact the second-quantized

method hasn’t been fully developed for string theory yet.

One will naturally conjecture that the first-quantized method will also be

useful in calculating the particle amplitudes. Indeed, from a certain limit of

string theory, Bern and Kosower obtained a set of first-quantized rules for

calculating the scattering amplitudes in Yang-Mills theory at the 1-loop level

[6]. This new method was shown to be equivalent to the ordinary second-

quantized method and much more efficient when calculating 1-loop gluon-gluon

scattering [7]. Later Strassler gave an alternative derivation of the same rules

directly from the first-quantized formalism of the particle theory [8].

1.2 General formalism

We start with the theory of scalar fields with cubic interaction (φ3 theory).

An unrenormalized N -point amplitude in φ3 theory at a certain loop level can

be represented by the following path integral,

A (M, N) =

ˆ

DeDX

Vrep
exp

{
−SM

cl [e,X]
} N∏

i=1

Oi [e,X] (1.1)

where M means the particular topology of the worldgraph being considered,

N is the number of external lines, Vrep is the volume of the reparametrization

group, and SM
cl [e,X] is the classical action of a free particle on the space M,

SM
cl [e,X] =

ˆ

M

dτ

(
1

2
e−1ẊµẊµ +

1

2
em2

)
(1.2)

where X is the coordinate scalar and e is the worldline vielbein. Vi’s are the

vertex operators that represents external lines,

Oi [e,X] =

ˆ

M

dτeWi (τ) =

ˆ

M

dτe exp (iki ·X (τ)) (1.3)
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To fix the reparametrization symmetry, we can set the vielbein e to 1

and introduce the coordinate ghosts b and c. However, by doing this, we

have left some part of the symmetry unfixed (the “Killing group”, like the

conformal Killing group in string theory), as well as over-fixed some non-

symmetric transformation (the “moduli space”, also like in string theory).

To repair these mismatches by hand, we add integrals over the moduli space

and take off some of the integrals over the topology. The general form of

the amplitude (1.1) after fixing the reparametrization symmetry is (up to a

constant factor from possible fixing of the discrete symmetry which arises due

to the indistinguishable internal lines)

A (M, N) =
µ∏

a=1

ˆ

Fa

dTa

ˆ

DXDbDc

× exp
{
−SM

gf [X, b, c]
}∏

i∈C

cWi (τi)
∏

i/∈C

Oi [1, X]

where C denotes the external lines whose position has to be fixed to break the

residual symmetry, and in the particle case the moduli Ta are just the “proper

times” represented by the lengths of the edges in the worldgraph of topology

M. SM
gf [X, b, c] is the gauge-fixed action

SM
gf [X, b, c] =

ˆ

M

dτ

(
1

2
ẊµẊµ +

1

2
m2 + bċ

)
(1.4)

And the measure of the path integral implicitly contains appropriate ghost

insertions to make the path integral over the ghost fields well-defined and

normalized to 1.

Further evaluation by the usual method of 1D field theory gives the fol-

lowing expression (with the delta function produced by the zero mode integral

suppressed since it trivially enforces the total momentum conservation in the

3



calculation of the scattering amplitude),

A (M, N) =
µ∏

a=1

ˆ

Fa

dTa VM(Ta)

ˆ

M




∏

k/∈C

dτk



 (1.5)

× exp

[
−1

2

∑

i,j

ki · kjGM(τi, τj)

]

where VM (Ta) is the amplitude of the vacuum bubble diagram,

VM (Ta) =

ˆ

DXexp

[
−1

2

ˆ

M

dτ
(
ẊµẊµ +m2

)]
(1.6)

and GM is the Green function which satisfies the following differential equation

on the worldline of topology M:

G̈M (τ, τ ′) = −δ (τ − τ ′) + ρ (1.7)

where ρ is a constant, of which the integral over the whole 1D space gives 1,

i.e., the inverse of the total volume (length) of the 1D space

ρ =
1

´

M dτ

This constant is required by the compactness of the worldline space.

The scattering amplitude (1.5) is a general expression for a worldgraph

of any topology with an arbitrary number of external lines. The form of the

vacuum bubble amplitude and Green function depends on the topology. For

example, the amplitude of the one-loop 1PI graph with N external lines (fig.

1.1) is

A (©, N) =

ˆ ∞

0

dT V©

ˆ

©

(
N−1∏

c=1

dτc

)
exp

[
−1

2

∑

i,j

ki · kjG© (τi, τj)

]

where

V© (T ) = exp

(
−1

2
Tm2

)
T−D/2

4



1

2

3 4

N 1

2

3 4

N

( )A ( )BFigure 1.1: One-loop diagram with N external lines. The topology of a circle
has one modulus, the circumference T of the loop. Also there is one residual
symmetry, which has to be fixed by taking off one of the proper-time integrals.

and

G© (τ, τ ′) = −1

2

[
|τ − τ ′|− (τ − τ ′)2

T

]

Another example is the amplitude of the two-loop 1PI graph with N ex-

ternal lines (fig. 1.2),

A (%, N) =
3∏

a=1

ˆ ∞

0

dTa V& (T1, T2, T3)

×
ˆ

&

(
N∏

c=1

dτc

)
exp

[
−1

2

∑

i,j

ki · kjG& (τi, τj)

]

where V& and G& will be determined in the following sections.

The expression for the amplitudes in Yang-Mills theory is similar, but with

some new features.

Firstly, although it is possible to use the first-quantized method to directly

calculate the full Yang-Mills amplitudes, we choose to, for simplicity, perform

the usual “color-ordering” technique (for a review, see [9]) first to separate out

the group theory factors and use the first-quantized method to deal with the

color-ordered (partial) amplitudes. The patial amplitudes are planar and this

means that the integrated vertex operators are now not always integrated over

the whole worldgraph space, but only the part that keeps the resulting graph

planar.
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1

2

3 4

N 1

2

3 4

N

( )A ( )BFigure 1.2: Two-loop diagrams with N external lines. The topology of this
kind has three moduli, the lengths T1, T2 and T3 of the three edges. And there
is no unfixed residual symmetry.

Secondly, the fixed vertex operators may not be simply the integrand of the

integrated vertex operators. The form of the vertex operators will depend on

the vacuum one chooses. Further at 2-loop or higher-loop, additional operators

(the picture changing operators) will be needed.

Thirdly, in addition to the bosonic Green function and the bosonic vacuum

bubbles, one will need the fermionic Green functions and the fermionic vacuum

bubbles. Unlike the bosonic case, the general formulas of the fermionic Green

functions and vacuum bubbles on arbitrary worldgraph are not known yet. We

will work out several special cases in this thesis.
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Chapter 2

Scalar theory

2.1 Introduction

After early results of first-quantized rules at 1-loop level, the generalization

to the rules for scalar theory at multi-loop level was then studied by Schmidt

and Schubert [10] and later by Roland and Sato [11]. Green functions on

multi-loop vacuum diagrams were obtained by considering these diagrams as

one-loop diagrams with insertions of propagators. The Green function on any

vacuum diagram containing a “Hamiltonian circuit” could be found by this

method. A natural hope of further generalization is to find the worldline Green

function on an arbitrary one-dimensional topology, without the limitation that

this topology must be one-loop with insertions. In this chapter, we give such a

general method to obtain the Green function for scalar field theory at arbitrary

multi-loop level. We show that the electric circuit can be an analog in solving

this problem.

On the other hand, Mathews [12] and Bjorken [13], from the second-

quantized method (usual field theory), gave a method with the electric circuit

analogy to evaluate Feynman diagrams at arbitrary loop level. Their result of

the Feynman parameter integral representation of scattering amplitudes was,

in principle, the most general result, but because of the limitation of second-

quantization, diagrams with the same topology except for different number

or placement of the external lines were treated separately, and the analogy

between the kinetic quantities on the Feynman diagram and the electric quan-

tities on the circuit was not completely clear.

7



Fairlie and Nielsen generalized Mathews and Bjorken’s circuit analog method

to strings, and obtained the Veneziano amplitude and 1-loop string amplitude

[14]. Although they didn’t use the term “Green function”, they in fact obtained

the expression of the Green function on the disk and annulus worldsheets of

the bosonic string with the help of the 2D electric circuit analogy.

These attempts indicate that the problem of solving for the Green function

on a certain topological space and the problem of solving a circuit may be

related. Indeed, we show that there is an exact analogy between the two kinds

of problems in the 1D case.

In this chapter, we first briefly review the quantization of the free scalar

particle in section 2.2. In section 2.3, we present the vertex operators needed

for the calculation of the amplitudes in scalar theory. In section 2.4, We show

a complete analogy among the problems of finding the Green function, the

static electric field and the electric circuit. By applying a general method to

solve the electric circuit, we give a compact expression of the Green function,

G̃(τ, τ ′) = −1

2
s+

1

2
vTΩ−1v

where the scalar s, vector v, and matrix Ω are quantities depending only on

the topological and geometrical properties of the 1D worldgraph space and the

position of the external sources τ and τ ′. This expression is similar to that

of the bosonic string [5]. In Section 2.5, a calculation of the vacuum bubble

amplitude is given to complete the discussion. Section 2.6 summarizes the

rules and gives some examples on worldgraphs at the tree, 1-loop and 2-loop

levels.

The results in this chapter are obtained through collaboration with Warren

Siegel and are published in [15].

2.2 Free particle

We begin our discussion with a brief review of the quantum mechanics of a

scalar particle moving without interaction with any potential. To proceed,

note that we have at least two ways of writing down a quantum theory: one

is to give the classical action and quantize it and the other one is to directly

construct the BRST charge for the theory. We will do both ways for the

8



current case of scalar particle. In the next chapter, when we discuss spinning

particle, it will be proved simpler and more general to construct the BRST

charge directly.

The classical action for a free particle is

Scl =

ˆ ∞

−∞
dτ

(
1

2
e−1ẊµẊµ +

1

2
em2

)
(2.1)

where e is the worldline vielbein, Xµ are worldline scalers which represent

the space-time coordinates of the particle and m is the mass of the particle.

The classical action has a worldline parameterization symmetry, and it can

be fixed by the standard BRST procedure, i.e., by introducing the Faddeev-

Popov ghosts b and c and the auxiliary field B which enforces the gauge-fixing

function e = 1. Now the gauge-fixed action reads,

Sgf =

ˆ

dτ

(
1

2
e−1ẊµẊµ +

1

2
em2 + iB (e− 1) + ebċ

)
(2.2)

By integrating out B, we get a simpler version of the gauge-fixed action (1.2),

which is used for calculating the amplitudes. Following the standard procedure

of obtaining the Nother charge, we find the BRST charge to be

Q = cH =
1

2
c
(
p2 +m2

)
(2.3)

The complete set of states can be written as |0〉 ⊗ |k〉 and c |0〉 ⊗ |k〉 among

which the following states are physical (namely, they are in the cohomology of

the BRST charge Q and have vanishing ghost number),

|0〉 ⊗ |k〉 k2 +m2 = 0 (2.4)

On the other hand, one can start from the constraints of the system and

directly write down the BRST charge. The contraint for the scalar particle is

just

p2 +m2 = 0 (2.5)

So we introduce ghost c and anti-ghost b for this constraint, and the BRST

charge is the same as eq. (2.3).

9



2.3 Vertex operators

As we have mentioned, in worldgraph method, we use vertex operator in-

sertions to represent the external lines. In the present case, we need vertex

operators that can represent external scalars and these operators are easily

constructed by requiring that they are planar waves and should be BRST

invariant. The integrated ones are

O =

ˆ

dτW (τ) =

ˆ

dτ exp [ik ·X (τ)]

and the fixed ones are

V (τ) = cW (τ) = c exp [ik ·X (τ)]

It is straightforward to check that these vertex operators are indeed BRST

invariant, i.e.,

[Q,O] = {Q, V } = 0

where Q is defined in (2.3) and the on-shell condition of the external particle,

k2 +m2 = 0, is implicitly used.

2.4 Green function

The only green function we need in the scalar case is the X propagator on the

graph, i.e.,

ηabGM (τ, τ ′) ≡
〈
Xa (τ)Xb (τ ′)

〉
(2.6)

It satisfies the following differential equation:

G̈M (τ, τ ′) = −δ (τ − τ ′) + ρM (2.7)

where the dots mean derivatives with respect to τ and ρ is a constant, of

which the integral over the whole 1D space gives 1, i.e., the inverse of the total

10



τ

τ

A

+1

τ

τ

B

+1

1
τ

τ

+1

Figure 2.1: Two-loop topological space with a unit positive charge at τ ′ and
a unit negative charge uniformly distributed over the whole space.

volume (length) of the 1D space

ρM =
1

´

M dτ
(2.8)

This constant is required by the compactness of the worldgraph: the differen-

tial equation (2.7) will be ill-defined on a compact space if one omits the ρM

term. One will immediately spot the problem if one considers GM (τ, τ ′) as the

electric potential on a compact 1D space and the δ (τ − τ ′) as a positive elec-

tric charge placed at τ . The electric lines will come out of the positive electric

charge and end either at negative charge or at infinity, but for compact space

there is no infinity and there is no negative charge by definition, so this kind

of setup will be not possible.

2.4.1 Electric circuit analogy

We note that the differential equation (2.7) is just the Poisson equation the

electric potential should satisfy when there is a unit positive charge at τ ′ and

a constant negative charge density of magnitude ρ over the whole space. This

suggests to us to consider the corresponding static electric problem where the

Green function is just the electric potential at τ of the above setup.

To demonstrate the general solution of the Poisson equation, we solve for

the Green function on the two-loop worldline as an example. Consider the 1D

topological space as shown in fig. 2.1 with a unit positive charge at τ ′ and a

unit negative charge uniformly distributed over the whole space. According to

11
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Figure 2.2: Two-loop topological space with a unit positive charge at τ ′ and
a unit negative charge at τ .
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Figure 2.3: Two-loop topological space with a unit positive charge at τ and a
unit negative charge uniformly distributed over the whole space.

the above argument, the Green function G (τ, τ ′) is the electric potential at τ .

Now we can use Gauss’ law and single-valuedness of the potential to write down

equations and solve for the expression of the potential. The potential indeed

gives a right form for the Green function, but it contains many terms that

will be canceled out when calculating the scattering amplitude using equation

(1.5), and hence can be further simplified.

Note that the setup of the static electric problem in fig. 2.1 can be regarded

as the superposition of the 2 setups in fig. 2.2 and fig. 2.3. Let G (τ, τ ′) denote

the potential at τ of the setup shown in 2.1, and Ḡ (τ, τ ′) denote the potential

at τ in fig. 2.2. The potential at τ in fig. 2.3 is then G (τ, τ). Thus

G (τ, τ ′) = Ḡ (τ, τ ′) +G (τ, τ)

12
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Figure 2.4: Two-loop topological space with a unit negative charge at τ ′ and
a unit positive charge at τ .

We further define G̃ (τ, τ ′) as the symmetric part of Ḡ (τ, τ ′), i.e.,

G̃ (τ, τ ′) ≡ 1

2

[
Ḡ (τ, τ ′) + Ḡ (τ ′, τ)

]
(2.9)

=

[
1

2
G (τ, τ ′) +

1

2
G (τ ′, τ)

]
− 1

2
G (τ, τ)− 1

2
G (τ ′, τ ′)

If we use G̃ (τ, τ ′) instead ofG (τ, τ ′) in equation (1.5), the sum can be rewritten

as

−1

2

∑

i,j

ki · kjG̃ (τi, τj) = −1

2

∑

i,j

ki · kj
{
1

2
[G (τi, τj) +G (τj, τi)]

}

+
1

2

∑

i,j

ki · kj
{
1

2
[G (τi, τi) +G (τj, τj)]

}

= −1

2

∑

i,j

ki · kj
{
1

2
[G (τi, τj) +G (τj, τi)]

}

= −1

2

∑

i,j

ki · kjG (τi, τj)

We have used conservation of momentum
∑

ki = 0 in the second step and

rearranged the summands in the third step. This shows that using G̃ (τ, τ ′)

in equation (1.5) is equivalent to using G (τ, τ ′). Note that same procedure is

usually applied to construct the Green function for bosonic strings [5],

G̃ (z, w) = G (z, w)− 1

2
G (z, z)− 1

2
G (w,w)

which is similar to equation (2.10).

Now we have to look for an electric field analog of G̃ (τ, τ ′). Since Ḡ (τ, τ ′)

13
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Figure 2.5: Two-loop topological space with a half unit positive charge at τ ′

and a half unit negative charge at τ .

is the electric potential at τ of the setup shown in fig. 2.2, it can be written

as the potential at τ ′ plus the potential difference from τ to τ ′. And Ḡ (τ ′, τ)

is the potential at τ ′ of the setup shown in fig. 2.4. The sum of Ḡ (τ, τ ′) and

Ḡ (τ ′, τ) just gives the potential difference from τ to τ ′ of fig. 2.2 because the

potential at τ ′ of fig. 2.2 cancels the potential at τ ′ of fig. 2.4. G̃ (τ, τ ′) is half

that potential difference, and therefore is just the potential difference from τ

to τ ′ of fig. 2.5.

It is now clear that, to write down the expression of the scattering am-

plitude, we only have to know the symmetric Green function G̃, and use the

following formula:

A (M, N) =
µ∏

a=1

ˆ

Fa

dTa VM
∏

c/∈C

ˆ

M
dτc exp

[
−
∑

i<j

ki · kjG̃(τi, τj)

]
(2.10)

This simplifies the expression of the Green function.

Now that G̃(τ, τ ′) is the potential difference from τ to τ ′ in fig. 2.5, we

can apply Gauss’ law (of 1D space) and single-valuedness of the potential to

write down the equations the Green function (electric potential Φ) and its first

derivative (electric field E) should satisfy. We assume the direction and value

of E as shown in fig. 2.6 and τ ′ and τ are respectively on T1 and T3. According

to Gauss’ law, we have the following equations:

a+ b = +
1

2
−a− c+ d = 0

−b+ c+ e = 0

−d− e = −1

2

14
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Figure 2.6: Two-loop topological space with a half unit positive charge at τ ′

and a half unit negative charge at τ . The lengths of the three arcs are T1,
T2, T3. τ ′ and τ are respectively on T1 and T3 and denote the lengths from
the origin. The magnitudes of the electric field on each part of the space are
denoted by a - e and the directions are chosen arbitrarily.
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Figure 2.7: Two-loop circuit with a half unit current input at τ ′ and withdrawn
at τ . The resistances of the three arcs are T1, T2, T3. τ ′ and τ are respectively
on T1 and T3 and denote the resistance from the origin. The currents on
the parts of the circuit are denoted by a - e and the directions are chosen
arbitrarily.
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The single-valuedness of the potential requires

cT2 + b(T1 − τ ′) = aτ ′

cT2 + dτ = e(T3 − τ)

If we regard the electric field E as the current I, the electric potential Φ as

the voltage V , and the length on the 1D space l as the resistance r, these

equations are just the Kirchhoff equations of a circuit of the same shape as

the worldline and with half unit current going into the circuit at τ ′ and half

unit current coming out at τ , as shown in fig. 2.7. It is easy to see that this

equivalence between 1D static electric field and circuit is valid for an arbitrary

1D topological space. We have the following relations for 1D (note that there

is no cross-sectional area in the 1D case):

σE = I

ρl = r

Φ = V

where σ and ρ (= 1/σ) are respectively the 1D conductivity and resistivity, and

the relation El = Φ is equivalent to Ohm’s law Ir = V . In addition, Gauss’

law is equivalent to Kirchhoff’s current law, and the single-valuedness of the

potential is equivalent to Kirchhoff’s voltage law. Thus the two problems are

indeed equivalent. The Green function G̃(τ, τ ′) on a particular 1D topological

space M can be understood as the voltage difference from τ to τ ′ when a half

unit current is input into the “circuit” (1D space) at τ ′ and withdrawn at τ .

Above we have shown that in the 1D case the problem of solving for the

first-quantized particle Green function, the potential difference in a static elec-

tric field and the voltage difference in a circuit are analogous. Before we solve

the circuit problem for the Green function, it is interesting to give a complete

analogy among the quantities in these three kinds of problems (Table 2.1).

2.4.2 Solving the circuit

The next thing we have to do is to find a general expression for the Green

function, i.e., a method to obtain the voltage difference described above. A

16



Table 2.1: Analogy among quantities in three kinds of problems

Particle Static electric field Electric circuit
Green function G̃ potential difference ∆Φ voltage difference ∆V

position x electric potential Φ voltage V
momentum p electric field E current I
proper time τ length l resistance r

action S energy U power P
external force F electric charge Q emf E

formula has already been given in graph theory (see, e.g., [16]). Here we

summarize this result and develop it into a formula which is similar to the

known form of the Green function on the 2D worldsheet of bosonic string

theory [5].

The voltage difference from τ to τ ′ can be obtained by the following steps:

(1) Connect τ and τ ′ by a wire with zero resistance.

(2) The resulting graph has vertices V = v1, ..., vn and edges E = e1, ...em−1, em.

Denote by em the edge (wire) we have just added in. Set the directions of all

the edges arbitrarily.

(3) Assign voltage, current and resistance on each edge; they can be written

in the form of vectors:

U = (U1, U2, ..., Um)
T

I = (I1, I2, ..., Im)
T

r = (r1, r2, ..., rm)
T

Also define the external-force-driven voltage u, which has, in our case, only

one non-zero component (the last one). Assume it has magnitude 1:

u = (u1, u2, ..., um)
T = (0, 0, ..., 1)T (2.11)

(4) Find all the “independent” loops in the graph: There should be (m−
n + 1). These loops can be identified by the following method: Choose an

arbitrary spanning tree (a connected subgraph that contains all the vertices

and is a tree) of the graph. There are always (m − n + 1) chords (the edges

17



not belonging to the spanning tree). Adding a chord to the spanning tree will

generate a one-loop graph. Thus each chord gives a loop in the graph, and all

the loops obtained by this way are independent of each other. Therefore there

are (m− n+ 1) loops. Assign an arbitrary direction to each loop.

(5) Define matrices B, C and R as follows:

Bij =






1 if vi is the initial vertex of ej,

−1 if vi is the terminal vertex of ej,

0 otherwise.

(2.12)

Cij =






1 if ei is in the same direction of loop lj,

−1 if ei is in the opposite direction of loop lj,

0 otherwise.

(2.13)

Rij =





ri i = j,

0 i )= j.
(2.14)

(6) With the above definitions, we can write down Kirchhoff’s current law,

Kirchhoff’s voltage law and Ohm’s law in compact forms as follows:

BI = 0

CTU = 0

U = RI+ u

The solution to the current on each edge is

I = −C
(
CTRC

)−1
CTu

(7) The total resistance between τ and τ ′ (excluding the added [last] edge)

is then minus the voltage on the last edge divided by the current on that edge,

i.e.,

R(τ, τ ′) = −Um

Im
= −um

Im
= − 1

Im

The Green function is then minus this resistance times the current, one half,

18



since it is the voltage difference from τ to τ ′,

G̃(τ, τ ′) = −1

2
R(τ, τ ′) =

1

2Im
= − 1

2uTC (CTRC)−1 CTu
(2.15)

where the last step comes from extracting the last component of I by using

the vector u defined in equation (2.11).

We can further simplify equation (2.15), by considering the physical mean-

ing of each part of the denominator:

(1) CTu and uTC: Since u = (0, ..., 0, 1)T, CTu is an (m− n+ 1)-component

column vector whose ith component is the direction of the last (mth) edge on

the ith loop (1 for “same”, −1 for “opposite”, and 0 for “not on the loop”). If

we appropriately choose our independent loops, we can achieve that the mth

edge is only on the (m− n+ 1)th (last) loop and has the same direction as this

loop. This is always achievable in steps: (a) Choose the spanning tree in such

a way that the mth edge doesn’t belong to the spanning tree, i.e., is a chord.

(b) Define the loop generated by adding the mth edge to the spanning tree

to be the (m− n+ 1)th loop. (c) Define the direction of the (m− n+ 1)th

loop to be the same as the mth edge. By doing so, we find that CTu is just a

(m− n+ 1) component column vector with the last component non-vanishing

and of value 1.

CTu = (0, ..., 0, 1)T

And uTC is the transpose of CTu. Define for convenience

P ≡ CTu

Note that PTMP gives the [(m− n+ 1) , (m− n+ 1)] component of any ma-

trix M with dimension (m− n+ 1)× (m− n+ 1).

(2) CTRC: CTRC is an (m− n+ 1)×(m− n+ 1) matrix. The components

can be interpreted as the sum of the “signed” resistances,

(
CTRC

)
ij
=

∑

k∈ all edges

f (k, i, j) rk

19



where rk is the resistance on kth edge and f is the “sign”:

f (n, i, j) =






1 nth edge is on loop i and j with the same orientation,

−1 nth edge is on loop i and j with the same orientations,

0 nth edge is not on loop i and j.

(2.16)

We define for convenience

M ≡
(

Ω v

vT s

)
≡ CTRC (2.17)

where Ω is an (m− n)× (m− n) matrix, v is an (m− n)-component vector,

and s is a scalar.

Now the formula for the Green function (2.15) becomes

G̃ = − 1

2PTM−1P

Since PTM−1P is just the [(m− n+ 1) , (m− n+ 1)] component of M−1, we

have

PTM−1P =
detΩ

detM

So, we have

G̃ = − detM

2 detΩ

Next we evaluate detM. By the usual matrix algebra (e.g., defining the de-

terminant by a Gaussian integral and doing the “m− n” integrals first),

detM = det

(
Ω v

vT s

)
= (detΩ)

[
s− vTΩ−1v

]

So we have the following expression for the Green function:

G̃ = − detM

2 detΩ
= −1

2
s+

1

2
vTΩ−1v (2.18)
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2.5 Vacuum bubbles

To complete this general method of writing down the scattering amplitude,

we need to give the expression for the vacuum bubble amplitude with a given

topology VM (Ta) defined in equation (1.6). This can always be achieved by

evaluating the bubble diagram by the second-quantized method, but here we

give a derivation by direct calculation in first-quantization. Note that the

path integral (1.6) is the sum over all possible momentum configurations of

the product of the expectation values of the free evolution operator between

two states at the ends of each edge:

VM (Ta) =
∑

{p}

{
µ∏

a=1

〈
pa

∣∣∣e−Ta(p2+m2)/2
∣∣∣ pa

〉}

=
∑

{p}

{
exp

[
µ∑

a=1

−1

2
Ta

(
p2a +m2

)
]}

where pa is the momentum of the particle traveling on the ath edge. The sum

over all the configurations of pa can be written as the the integration over all

the possible values of pa, but they are not independent from each other. Each

of the µ pa’s can be written as a linear combination of L ki’s where L is the

number of loops of the graph and ki is the loop momentum on the ith loop.

So the amplitude VM (Ta) can be written as

VM (Ta) = exp

[
−1

2

(
µ∑

a=1

Ta

)
m2

]
(2.19)

×
ˆ

(
L∏

i

dki

)
exp



−1

2

µ∑

a=1

Ta

(
L∑

i=1

gaiki

)2




where

gai =






1 edge a has the same direction as loop i,

−1 edge a has the opposite direction as loop i,

0 edge a is not on loop i.

It is easy to see the following points: (a) If edge a is on loop i, there is a

Tak2
i term in the underlined sum in equation (2.20), and vice versa. (b) If edge
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a is on both loop i and loop j, there is a term 2Takikj in the sum, and vice

versa. Further, if on edge a both loops have the same (opposite) direction,

there is a positive (negative) sign before the term, and vice versa. Thus if we

use the factor f(a, i, j) defined in equation (2.16), we can write the underlined

part in equation (2.20) in a compact form, and further in terms of the period

matrix according to the definition (2.17), or definition (2.22) below:

µ∑

a=1

Ta

(
L∑

i=1

gaiki

)2

=
µ∑

a=1

L∑

i,j=1

f (a, i, j)Takikj

=
L∑

i,j=1

[
µ∑

a=1

f (a, i, j)Ta

]
kikj =

L∑

i,j=1

Ωijkikj

The amplitude VM (Ta) can then be calculated easily:

VM (Ta) = exp

[
−1

2

(
µ∑

a=1

Ta

)
m2

]
ˆ

(
L∏

i

dki

)
exp

[
−1

2

L∑

i,j=1

Ωijkikj

]

= exp

[
−1

2

(
µ∑

a=1

Ta

)
m2

]
(detΩ)−D/2 (2.20)

where D is the dimension of the spacetime.

2.6 Amplitudes

2.6.1 General rules

We now summarize our results for general amplitudes. To find the Green

function:

(1) Consider the “circuit” (topology M with two more vertices at τ and τ ′

respectively) as a graph. Assign a number to each edge. Define arbitrarily the

direction of each edge. Assign a number to each loop. Define arbitrarily the

direction of each loop.

(2) Find the period matrix Ω by the following definition:

Ωij =
∑

k∈ all edges

f(k, i, j)rk (2.21)
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where

f (n, i, j) =






1 nth edge is on loop i and j with the same orientation,

−1 nth edge is on loop i and j with the same orientations,

0 nth edge is not on loop i and j.

Each rk may be τ , τ ′, a Ta of the topological space M without external lines,

Ta − τ , or Ta − τ ′. It is obvious that Ω does not depend on τ and τ ′, and only

depends on the properties of M: To see this, note that the graph of the circuit

has just two more vertices (at positions τ and τ ′) than the graph of M and

each of them may separate an edge in the graph of M into two “sub-edges”.

But these changes on the graph do not affect the period matrix: They neither

give new loops nor eliminate loops and the sub-edges will always be on or off

a loop simultaneously. Thus the period matrix of the graph of the circuit is

just the period matrix of the graph of M. And one only has to calculate it

once for one certain topology,

Ωij =
µ∑

a=1

f(a, i, j)Ta (2.22)

(3) Find a path (call it “reference path”) connecting τ and τ ′. Choose its

direction arbitrarily. Define the scalar s as the total resistance on the reference

path.

(4) Find the vector v defined as follows:

vi =
∑

k∈ all edges

f(k, i, 0)rk

where “0” means the reference path.

(5) The Green function is given by

G̃ = −1

2
s+

1

2
vTΩ−1v

The amplitude is then given by

A (M, N) =
µ∏

a=1

ˆ

Fa

dTa VM
∏

c/∈C

ˆ

M
dτc exp

[
−
∑

i<j

ki · kjG̃ (τi, τj)

]
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with the Green function as above, and the vacuum bubble amplitude is

VM (Ta) = exp

[
−1

2

(
µ∑

a=1

Ta

)
m2

]
(detΩ)−D/2

Although we have defined and derived all these quantities s, v and Ω in

terms of the concepts in the circuit problem, it is easy to give the worldline

geometric interpretation by noting that the resistance is an analog of the proper

time, i.e., the length of the worldline (Table 2.1). s is just the total proper time

of the reference path, and the components of v are the sums of the “signed”

proper time on the common edges of the reference path and each loop. Entries

of Ω are sums of the “signed” proper time on the common edges of each pair

of loops. (All the signs are given by f .) The components of v and entries of

Ω can also be expressed as integrals of the “Abelian differentials” on the loops

of the worldline,

vi =

ˆ τ

τ ′
ωi

Ωij =

‰

i

ωj

where ωi is the line element on loop i and the second integral is around loop

i along its direction. Then our expression for the particle amplitude has a

similar structure to the bosonic string amplitude, with the Green function on

the 2D worldsheet [5]:

G̃ (w, z) = −2 ln |E (w, z)|+ 2π Im

ˆ z

w

ω (Im Ω)−1 Im

ˆ z

w

ω

where E is the prime form, the vector ω contains the basis of the Abelian

differentials and the matrix Ω is the period matrix.

2.6.2 Examples

Here we give some examples of obtaining the Green functions on different

topologies. For the finite line of length T in fig. 2.8, there is no loop, so there

is no period matrix Ω nor vector v. s is just the total resistance between τ
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Figure 2.8: The topology of a line with length T . There is no loop and hence
no period matrix nor vector v. The only path between τ and τ ′ is the edge
connecting the two vertices e1, so we choose it as the reference path.
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Figure 2.9: The one-loop topology. T is the circumference of the circle. There
are two edges (e1,e2) and two vertices (v1,v2). τ and τ ′ are the lengths from
v1 and v2 to the origin though a counterclockwise path. The directions of the
edges are chosen arbitrarily and marked in the figure. There is only one loop
and it is marked by dotted lines. The reference path is marked by a dashed
line.

and τ ′. So the Green function is

G̃− (τ, τ ′) = −1

2
s = −1

2
|τ − τ ′|

and

V− (T ) = exp

(
−1

2
Tm2

)

The amplitude is then given by equation (2.10). One just has to note that

there is one modulus T for this case and to fix the residual symmetry: Two

of the external lines should be fixed at one end of the line and another two

should be fixed at the other end.

For the circle, there is one loop as shown in fig. 2.9. So the period matrix

25



!

!'

( )B

3
T

2
T

1
T

1
e

2
e

3
e

4
e

5
e

!

!'

( )A

T

1
e 2

e

"

"

1
v

2
v

1
v

2
v

3
v

4
v

Figure 2.10: A two-loop topology. T1, T2 and T3 are the lengths of the three
arcs. τ and τ ′ are respectively the length on the 3rd and 1st arc from the origin.
(If the Green function with τ and τ ′ on different arcs is needed, simply repeat
the steps for this special case.) There are 5 edges (e1 to e5) and 4 vertices (v1
to v4). The directions of the edges are chosen arbitrarily and marked in the
figure. There are two independent loops and they are marked by dotted lines.
The reference path is marked by a dashed line.

is 1× 1. The only entry of Ω is then

Ω = T

And according to the definition, s and v are

s = |τ − τ ′|

v = |τ − τ ′|

Thus the Green function on the circle is

G̃© (τ, τ ′) = −1

2
s+

1

2
vTΩ−1v = −1

2
|τ − τ ′|+ (τ − τ ′)2

2T

and the vacuum bubble amplitude is

V© (T ) = exp

(
−1

2
Tm2

)
T−D/2

For the Green function on the 2-loop graph shown in fig. 2.10, the period
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matrix is 2× 2 and v is a two-component vector. Ω, s and v are

Ω =

(
T1 + T2 −T2

−T2 T2 + T3

)

s = τ ′ + τ

v = (τ ′, τ)T

So the Green function is, by plugging all the above into equation (2.18),

G̃& (τ, τ ′) = − 1

2 (T1T2 + T2T3 + T3T1)

× [T1 (T2 + T3 − τ) τ + T1 (T2 + T3) τ
′

−T3τ
′2 + T2 (T3 − τ − τ ′) (τ + τ ′)

]

and the vacuum bubble amplitude is

V& (T1, T2, T3) = exp

[
−1

2
(T1 + T2 + T3)m

2

]
(T1T2 + T2T3 + T3T1)

−D/2
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Chapter 3

Yang-Mills

3.1 Introduction

First-quantization has provided an efficient way of calculating Yang-Mills am-

plitudes. A set of rules for writing down 1-loop Yang-Mills amplitudes was first

derived by Bern and Kosower from evaluating heterotic string amplitudes in

the infinite string-tension limit [6]. Later an alternative derivation of the same

rules (but only for the 1-loop effective action) from first-quantization of the

particle was given by Strassler [8]. It is worth noting that Bern and Kosower’s

string approach naturally produces whole non-abelian amplitudes including

both one-particle-irreducible (1PI) and non-1PI amplitudes since such a dis-

tinction was not present at the string level. On the other hand Strassler’s

first-quantized particle approach is based on a path integral representation of

the effective action, and therefore is intrinsically more convenient for calculat-

ing the effective action itself, or 1PI amplitudes. In addition, the generalization

of these first-quantized rules to multi-loop amplitudes has not been clear. A

generalization of Bern and Kosower’s approach seems difficult, because the

calculation of multi-loop string amplitudes is very complicated. On the other

hand, although there has been successful generalization of Strassler’s approach

to derive 2-loop Yang-Mills amplitudes from first-quantization of the particle

with the sewing method [17], a more concise representation for Yang-Mills

amplitudes that is easier for generalization to all loop levels will be preferred,

if it exists. In fact, such a representation has not yet been found even for

Yang-Mills tree amplitudes. This is partially because the vacuum, ghost mea-
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sure and Green function needed for the calculation of trees and multi-loops

have not been clarified. Although there are already many ways to compute

Yang-Mills tree amplitudes, it is important to clarify how first-quantization

of the particle works at tree level for the purpose of generalizing this method

to both non-1PI cases and multi-loop level. This is the main purpose of this

chapter. To derive the first-quantized rules for trees, we start from theories

of free relativistic spinning particles, which were first developed by Brink et

al. [18] and many others [19]. In these theories the spin degree of freedom is

encoded in the worldline supersymmetry. More precisely, the BRST quanti-

zation of the particle action with N -extended worldline supersymmetry shows

that the cohomology is of a spin-N2 particle.

In this chapter we study the N = 2 theory, which describes a spin-1 parti-

cle. We derive the vertex operator for background gauge fields via the usual

BRST quantization method, thus ensuring background gauge invariance. (The

coupling of background vector fields to the spin-12 particle was formulated in

[18]. It was used to calculate effective actions in [20].) We proceed to show

how the correct amplitudes can be derived. In the usual worldline approach,

all interactions are derived by coupling external fields to the 1-dimensional

worldline or loop. For higher-point tree graphs this approach usually requires

sewing lower-point tree graphs to the worldline. This does not fit the picture of

perturbation in the first-quantized theory since one would normally anticipate

a formalism that can calculate any amplitude without calculating the lower-

point amplitudes first: The knowledge of Green functions and vertex operators

should be sufficient. Here we propose an alternative (“worldgraph”) approach

that includes 1D topological spaces that are not strictly 1D manifolds: They

are not always locally R1, but only fail to be so at a finite number of points.

Taking these spaces into account we derive a set of rules for computing ampli-

tudes that can be extended to all possible graphs.

We organize this chapter as follows: In section 3.2 we give a brief review

of a general formalism to describe free spinning particles with arbitrary spin.

In section 3.3 we focus on the spin-1 particle: introducing background Yang-

Mills interaction to the theory and deriving the vertex operator for the external

Yang-Mills fields. In section 3.4 we derive for several special cases the fermionic

Green functions needed for the calculation of Yang-Mills tree amplitudes. In
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section 3.5, we give the simplest non-trivial vacuum amplitude, i.e., the one-

loop vacuum bubble. In section 3.6, we present the calculation of 3 and 4-

point trees, and one-loop amplitudes. We obtain these amplitudes through two

different routes, namely, the worldline approach and the worldgraph approach.

The results in this chapter are obtained through collaboration with Yu-tin

Huang and Warren Siegel and are published in [21].

3.2 Free particle

A classical relativistic massless spin-1 particle can be described by the following

action

Scl =

ˆ ∞

−∞
dτ

(
1

2
e−1ẊµẊµ −

i

2

(
ψ̄ · ψ̇ + ψ · ˙̄ψ

)
(3.1)

−ie−1
(
χψ̄ · Ẋ + χ̄ψ · Ẋ

)
+

1

2
f
(
ψ̄ · ψ − ψ · ψ̄

))

where e and Xµ have the same meaning as in the case of scalar particles, the

complex fermionic field χ is the super-vielbein and ψµ are worldline fermionic

fields which will introduce spin of the particle in space-time. In fact this

action is the action for worldline scalar and spinor coupling to N = 2 worldline

supergravity (with local super-reparametrization symmetry).

Generally a relativistic spin-s particle can be described by coupling world-

line scalars and spinors to N = 2s worldline supergravity. The action for

spin-s particle is a straight-forward extension of eq. (3.1) and can be found

in [19]. Note that this action reduces to the action for scalar particles when

s = 0.

We can quantize action (3.1) by the Faddeev-Popov method, but it will

be simpler to directly construct the BRST charge, so we follow the latter

approach.

We begin with the free BRST charge for arbitrary spin. A useful method

for deriving gauge invariant actions is the OSp(1,1|2) formalism [22], where one

starts with the light-cone SO(D−2) linearly realized by the physical states, and

adds two bosonic coordinates to restore Lorentz covariance and two fermionic

coordinates to cancel the additional degrees of freedom. Thus the SO(D− 2)
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representation is extended to OSp(D− 1, 1|2), and the non-linearly realized

SO(D− 1, 1) of the physical states is extended to OSp(D, 2|2). The action then

uses only the subgroup SO(D− 1, 1)⊗OSp(1, 1|2), where the OSp(1, 1|2) is a
symmetry of the unphysical (orthogonal) directions under which the physical

states should be singlets (in the cohomology). We use (A,B...) for OSp(D, 2|2)
indices, (a, b...) for the SO(D− 1, 1) part and (+,−), (⊕,%) for the bosonic

and fermionic indices of OSp(1, 1|2) respectively. The easiest way is then to

begin with linear generators JAB of OSp(D, 2|2), use the gauge symmetry to

gauge away the + direction of OSp(1, 1|2) and use equations of motion to

fix the − direction. Then the kinetic operator of the action is simply the

delta function of the OSp(1, 1|2) generators (now non-trivial due to solving

the equation of motion).

One can further simplify things by utilizing only a subset of the generators

of OSp(1, 1|2). (This is analogous to the method of finding SU(2) singlets by

looking at states annihilated by J3 and J−.) In the end one is left with the

group IGL(1) with generators J⊕& and J⊕−. Relabeling c = x⊕ and b = ∂⊕,

J = iJ⊕& + 1 = cb+ iS⊕&, Q = J⊕− = 1
2c∂

2 + S⊕a∂a + S⊕⊕b (3.2)

J will be the ghost number and Q the BRST charge. One is then left with the

task of finding different representation for SAB satisfying the algebra

[
SAB, S

CD
}
= −δ [C

[A S D}
B}

There may be more than one representation corresponding to the same spin.

It is easy to build massless spin-12 representations using gamma matrices

spin-12 : SAB = −1
2 [γA.γB}, {γA, γB] = −ηAB

and spin-1 using ket-bra

spin-1 : SAB = |[A〉〈B}|, 〈A|B〉 = ηAB

All higher spins can be built out of these two. For a review of the OSp(1, 1|2)
formalism see [23].

For our purpose we use first-quantized fields (i.e. fields on a worldline) to
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form representations. It is known that the free relativistic spin-N2 particle can

be described by a first-quantized action with N -extended worldline supersym-

metry [18]. For example, for spin 1
2 we use N = 1 worldline fields ψA where ψa

are fermionic fields and ψ⊕ = iγ, ψ& = iβ are the bosonic ghosts for SUSY.

We summarize this representation as follows

Sab = 1
2

[
ψa,ψb

]
= ψaψb (3.3)

S⊕a = i
2 {γ,ψ

a} = iγψa

S⊕⊕ = 1
2 {γ, γ} = γ2

and
{ψa,ψb} = ηab

[γ,ψa] = 0

[γ, γ] = 0

In the following we focus on the N = 2 spinning particle representation for

massless vector states. Now, due to N = 2 there are a pair of worldline spinors
(
ψa, ψ̄b

)
and similarly bosonic ghosts

(
γ, γ̄, β, β̄

)
. The spin operators are then:

Sab = ψ̄aψb − ψ̄bψa (3.4)

S⊕a = iγψ̄a + iγ̄ψa

S⊕⊕ = 2γγ̄

with the following (anti-)commutation relations for the fields:

{ψ̄a,ψb} = ηab

{ψ̄a, ψ̄b} = {ψa,ψb} = [γ, β] = [γ̄, β̄] = 0

[γ, β̄] = [γ̄, β] = {b, c} = 1

3.3 Vertex operators

Interaction with external fields is introduced by covariantizing all the deriva-

tives in the free BRST charge and adding a term proportional to iFabSab,

which is the only term allowed by dimension analysis and Lorentz symmetry.
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The relative coefficient can be fixed by requiring the new interacting BRST

charge QI to be nilpotent. In general the result is:

QI =
1
2c

(
∇2 + iFabS

ab
)
+ S⊕a∇a + S⊕⊕b (3.5)

where we use the following convention for the covariant derivative and the field

strength:

∇a ≡ ∂a + iAa

iFab ≡ [∇a,∇b]

The nilpotency of QI can be used to derive vertex operators that are Q

closed. If we define the vertex operator as

V = QI −Q

Then

Q2
I = 0 ⇒ {Q, V }+ V 2 = 0

In the linearized limit, which is relevant for asymptotic states, we take only

the part of V that is linear in background fields (denoted by V0). Then one

has

{Q, V0} = 0

There will be an additional U(1) symmetry in the N = 2 model. The

vector states should be U(1) singlets and can be picked out by multiplying the

original QI in eq. (3.5) with an additional δ function (a U(1) projector).

Q′
I = δ

(
JU(1)

)
QI

JU(1) is the U(1) current:

JU(1) =
1
2

(
ψ · ψ̄ − ψ̄ · ψ

)
− γβ̄ + γ̄β = −ψ̄ · ψ + D

2 − γβ̄ + γ̄β

where D is the spacetime dimension and ψ̄a, γ̄, β̄ have U(1) charge −1, and

their complex conjugates have +1. This U(1) constraint is important in that

it ensures that QI for the N = 2 model is indeed nilpotent. We will show this

is the case.
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Before choosing any specific representation, we have

Q′2
I = δ

(
JU(1)

)
Q2

I = δ
(
JU(1)

)
1
2 {QI, QI} (3.6)

= δ
(
JU(1)

)
1
2

{
−icS⊕a[∇b, Fab]

−icS⊕cSab [∇c, Fab] + iS⊕⊕SabFab + iS⊕aS⊕bFab

}

To understand how the projector works for the N = 2 model, consider

normal ordering with respect to the following scalar vacuum:

(γ, β, ψ, b) |0〉 = 0

This vacuum has U(1) charge +1 . A general normal-ordered operator with

≥ 2 barred fields on the left (unbarred fields are on the right), acting on any

state built from the above vacuum, will either vanish or have negative U(1)

charge. Therefore normal-ordered operators with ≥ 2 barred fields will be

projected out by δ(JU(1)). Actually this property can be made true for any

vacuum: One just needs to shift the current by a constant in the projection

operator.

With this in mind we have the following:

δ
(
JU(1)

)
S⊕aS⊕b = δ

(
JU(1)

) (
iγψ̄a + iγ̄ψa

) (
iγψ̄b + iγ̄ψb

)
(3.7)

= −δ
(
JU(1)

)
γ̄γηab = −δ

(
JU(1)

) 1
2
S⊕⊕ηab

δ
(
JU(1)

)
S⊕⊕Sab = δ

(
JU(1)

)
2γγ̄

(
ψ̄aψb − ψ̄bψa

)
= 0

δ
(
JU(1)

)
S⊕cSab = δ

(
JU(1)

) (
iγψ̄c + iγ̄ψc

) (
ψ̄aψb − ψ̄bψa

)

= δ
(
JU(1)

) (
iγ̄ψbηac − iγ̄ψaηbc

)

Note that one could arrive at the same algebra for the spin operators if one were

to use the spin-1 ket-bra representation introduced in the previous section; thus

one again sees that the U(1) projector acts as picking out vector states. In

fact the nilpotency of the BRST charge can be checked more easily using the

ket-bra representation; however, for completeness we plug the above result

into our previous calculation for Q2′
I . We have

δ
(
JU(1)

)
Q2

I = cδ
(
JU(1)

) (
ψ̄aγ − γ̄ψa

) [
∇b, Fab

]
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which is proportional to the equation of motion satisfied by the asymptotic

states. So we have proved that δ
(
JU(1)

)
Q2

I = 0.

The vertex operator is then easily obtained by considering QI as an expan-

sion of Q,

V0 = [QI −Q]linear in A (3.8)

≡ cWI +WII

= 1
2c

[
2iA · ∂ + i (∂aAb − ∂bAa)S

ab
]
+ iAaS

⊕a

= −εa
[
c
(
iẊa + ψ̄bψakb − ψ̄aψbkb

)
+
(
γψ̄a + γ̄ψa

)]
exp [ik ·X (τ)]

This vertex operator satisfies

{Q, V0} = 0

The integrated vertex can be derived by noting:

[Q,WI] = ∂V0 →
[
Q,

ˆ

WI

]
= 0

More complicated vertex operators are needed for the usual worldline for-

malism. We will discuss in detail how these operators arise in section V. In

the worldgraph formalism linearized vertex operators derived above will be

sufficient.

We conclude this section by give some remarks on the vacuum. When

calculating amplitudes, the vacuum with which one chooses to work dictates

the form of vertex operator and insertions one needs. In string theory, different

choices of vacuum are called different pictures. The scalar vacuum discussed

above is defined by the expectation value

〈0|c|0〉 ∼ 1

The conformal vacuum of string theory

〈0|ccc|0〉 ∼ 1

does not exist in particle theory since there aren’t that many zero modes to
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saturate at tree level. On the other hand one could also treat the worldline

SUSY ghosts’ zero modes, which would require additional insertions. These

are defined by the vacuum

(β̄, β, ψ, b)
∣∣0̂
〉
= 0 ⇒

〈
0̂|cδ(γ)δ(γ̄)|0̂

〉
∼ 1

which has U(1) charge 2 and is thus not a physical vacuum.

To use the vertex operator we found above, we need to find a U(1) neutral

vacuum
∣∣0̃
〉
that is in the cohomology of the free BRST charge Q. It is related

to the previous vacuum through the following relation:

∣∣0̃
〉
= β̄ |0〉 = δ

(
1

2
γ2

) ∣∣0̂
〉
,

which leads to
〈
0̃
∣∣ γcγ̄

∣∣0̃
〉
∼ 1

This vacuum can be understood as the Yang-Mills ghost. It has ghost number

−1 and lies in the cohomology only at zero momentum, indicating a constant

field. Therefore it corresponds to the global part of the gauge symmetry:

Gauge parameters satisfying QΛ = 0 have no effect on the gauge transforma-

tions in the free theory, δφ = QΛ. In principal one could proceed to compute

amplitudes in the available vacua mentioned above; however, due to its U(1)

neutral property, the Yang-Mills ghost vacuum should be the easiest to extend

to higher loops, since it would be easier to enforce U(1) neutrality.

3.4 Green functions

In section 2.4, we have already derived the Green function for X fields on any

worldgraph. In this section we consider the Green function for the fermions ψ

and ψ̄.

3.4.1 Worldline

We start with the simplest case - the ψψ̄ propagator on an infinite worldline.

Using the Yang-Mills ghost vacuum
∣∣0̃
〉
we defined in the last subsection, this
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propagator is easily evaluated,

ηabGF (τ, τ
′) ≡

〈
ψa (τ) ψ̄b (τ ′)

〉
= ηabΘ (τ − τ ′)

where Θ is a step function which is zero if the argument is negative and one

if the argument is positive. Note that the fermionic Green function does not

have the naive relation with the bosonic Green function

GF )= −ĠB =
1

2
sign(τ − τ ′)

It differs by a constant 1
2 . This is due to different boundary conditions: The

vacuum we choose, which is at t = −∞, is defined to be annihilated by ψa;

therefore on a time ordered line the expectation can be non-vanishing only if

ψ is at later time then ψ̄.

Later, when we discuss the amplitudes, we will present two different-looking

but equivalent approaches. One is called the worldline approach and the other

is called the worldgraph approach. In worldline approach, a worldgraph is

always decomposed into worldlines and thus knowing the worldline propagator

is sufficient. However, it will be nicer if we can avoid this decomposition and

directly use the Green function on a particular worldgraph. We have shown

that this is possible for the scalar amplitudes by giving a general formula of

the Green function on arbitrary worldgraph, but it is not known whether the

general formula for the ψψ̄ Green function on arbitrary worldgraph exists. In

the following subsections we will study a few special cases.

3.4.2 Three-point tree

As mentioned previously, it is desirable even for tree graphs to develop a for-

malism that does not require an identification of a worldline to which external

states are attached. Intuitively such a formalism would require one to simply

identify 1D topological spaces that connect the external lines. This idea is

very similar to string theory calculations and goes back as far as 1974 [24].

The main challenge for this “worldgraph approach” (following [25]) is the def-

inition of Green functions on these non-differentiable topological spaces (non-

differentiable because at interacting points it is not locally R1). Previously,
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Figure 3.1: The topological space for a three-point interaction.

for multi-loops such Green functions have been derived by a combination of

one-loop Green functions and insertions: See [26] for review. Recently in [15] a

more straightforward way to derive multi-loop Green functions was developed

for scalar particles using the electric circuit analog. (A similar approach was

used in [25].) Since fermion Green functions are related to bosons through

a derivative (up to additional terms due to choice of vacuum or boundary

conditions), what remains is to consistently define derivatives on these 1D

topological spaces. We will use tree graphs as our testing ground.

Consider the three-point amplitude: One has only one graph, fig. 3.1.

The arrows indicate the direction in which each τi is increasing. For scalar

fields it was shown [15] that the appropriate Green function is proportional to

the distance between two insertions; for the 3-point graph this is taken to be

−1
2(τi + τj).

To define derivatives, one notes that they are worldline vectors and there-

fore must be conserved at each interaction point. This leads to the conclusion

that if we denote the worldgraph derivative on each line as D(τi), for the

three-point graph they must satisfy:

Dτ1 +Dτ2 +Dτ3 = 0 (3.9)

This can be solved by defining the worldgraph derivatives as follows:
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Dτ1 = ∂τ2 − ∂τ3 (3.10)

Dτ2 = ∂τ3 − ∂τ1

Dτ3 = ∂τ1 − ∂τ2

There is another solution which corresponds to (counter-)clockwise orienta-

tion. The choice of orientation can be fixed by matching it with the color

ordering. Since the derivative is a local operator, its definition will not be

altered if the three-point graph is connected to other pieces to form larger

graphs. The fermionic Green function then follows from the bosonic by taking

ψ as a worldline scalar and ψ̄ as a worldline vector:

GF (τi, τj) ≡ 〈ψ̄(τi)ψ(τj)〉 = 2〈DτiX(τi)X(τj)〉

Armed with these two Green functions we can show how the three-point am-

plitude works.

Now the worldline derivatives in WI are replaced by worldgraph derivatives

defined in eq. (3.10) and they give:

〈
iε1 ·Dτ1X(τ1)e

i[
∑3

i=1 ki·X(τi)]
〉
= −(ε1 · k3)

〈
iε2 ·Dτ2X(τ2)e

i[
∑3

i=1 ki·X(τi)]
〉
= −(ε2 · k1)

〈
iε3 ·Dτ3X(τ3)e

i[
∑3

i=1 ki·X(τi)]
〉
= −(ε3 · k2)

The fermionic Green functions are (with Fij ≡ 〈ψ̄(τi)ψ(τj)〉):

F12 = −1, F23 = −1, F31 = −1

F21 = +1, F32 = +1, F13 = +1
(3.11)

3.4.3 Four-point tree

Now we consider the four-point tree. As in [15] the bosonic Green function is

still −1
2L, where L is the length between two fields. Thus it is the same as in

the three-point case, except that when the two fields sit on opposite ends of

the modulus, one needs to add the value of the modulus T . The worldgraph
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Figure 3.2: The two graphs for the four-point interaction

derivatives still act the same way, since the definition is local, irrespective of

other parts of the graph. This gives the following result for the s-channel

graph: 〈
iε1 ·Dτ1X(τ1)e

i[
∑4

i=1 ki·X(τi)]
〉
= −(ε1 · k2)

〈
iε2 ·Dτ2X(τ2)e

i[
∑4

i=1 ki·X(τi)]
〉
= +(ε2 · k1)

〈
iε3 ·Dτ3X(τ3)e

i[
∑4

i=1 ki·X(τi)]
〉
= −(ε3 · k4)

〈
iε4 ·Dτ4X(τ4)e

i[
∑4

i=1 ki·X(τi)]
〉
= +(ε4 · k3)

The fermionic Green functions are again more subtle. There are two types,

that for bc ghosts and that for the ψ̄ψ. First one notes that on the modulus,

which is a worldline, both Green functions should be a step function, as ex-

plained in the previously. This is sufficient for the b, c ghosts. For ψ̄ψ, since

they can contract with each other on the same three-point graph or contract

across the modulus, one must take the combined result: For contractions on

the same three-point graph the rules are just as eq. (3.11), while for contrac-

tion across the modulus one multiplies the two Green functions on the two

vertices with one from the modulus. For example, in the s-channel graph fig.

3.2:
〈
ψ̄(τ1)ψ(τ3)

〉
=

〈
ψ̄(τ1)ψ(τT )

〉 〈
ψ̄(τT )ψ(τ3)

〉
Θ(T ) = −1
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As one can see, the contraction across the modulus is broken down as if there

were a pair ψ̄ψ on each end of the modulus, contracting with the vertices

separately, and a final step function due to the fact that the modulus is a

worldline. (We choose the left time to be earlier.) We now list all the relevant

Green functions for the s-channel graph. The Green functions for the bc ghosts

are

〈c(τ1)b(T )〉 = 1, 〈c(τ2)b(T )〉 = 1, 〈c(τ3)b(T )〉 = 0, 〈c(τ4)b(T )〉 = 0

and the Green functions for the ψ̄ψ are (recall that we have defined Fij ≡
〈ψ̄(τi)ψ(τj)〉)

F12 = +1, F21 = −1, F34 = +1, F43 = −1

F23 = +1, F32 = 0, F14 = +1, F41 = 0

F13 = −1, F31 = 0, F24 = −1, F42 = 0

3.4.4 One-loop

We now discuss the fermionic Green function on a loop needed in worldgraph

approach. In this case we need to insert a U(1) projector in the loop to pick

out all the U(1) neutral states. That is, one inserts:

δ
[
JU(1)

]
=

1

2π

ˆ 2π

0

dθ exp

[
i
θ

T

ˆ T

0

dτJU(1)

]

=
1

2π

ˆ 2π

0

dθ exp

[
i
θ

T

ˆ T

0

dτ(−ψ̄ · ψ + D
2 − γβ̄ + γ̄β)

]

Similar approaches have been taken in [8] and [27]. In [8], iθ is interpreted as a

mass to be taken to infinity at the end, and together with GSO-like projection

kills all U(1) non-neutral states. For us the U(1) projector naturally gets

rid of all unwanted states. Furthermore the worldline ghosts were not taken

into account in [8]; therefore they need to include the effect of Faddeev-Popov

ghosts by adding covariant scalars to the action. This is sufficient for one

loop, since they couple in the same way, yet will no longer be true for higher

loops. Here we’ve (and also [27]) included all the worldline ghosts; thus the

Faddeev-Popov ghosts are naturally included. In [27] gauge fixing the U(1)

gauge field on a loop leads to a modulus, which is equivalent to θ in our U(1)
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projector insertion. The two views are analogous.

The inclusion of a U(1) projector amounts to additional quadratic terms in

the action which will modify the Green function and introduce an additional

θ-dependent term to the measure. Here we give a brief discussion of its effect.

The kinetic operator for the SUSY partners and SUSY ghosts is now:

∂τ + i
θ

T

The θ term can be absorbed by redefining the U(1) charged fields,

Ψ′ = eiθτ/TΨ Ψ̄′ = e−iθτ/T Ψ̄

where Ψ = (ψa, γ, β). Then the integration over θ is really integrating over all

possible boundary conditions since:

Ψ′(T ) = eiθΨ′(0)

Without loss of generality, we choose the periodic boundary condition for the

original fields Ψ.

The fermionic Green function will be modified to

GF (τ, τ ′) =
e−

iθ(τ−τ ′)
T

2i sin θ
2

[
ei

θ
2Θ (τ − τ ′) + e−i

θ
2Θ (τ ′ − τ)

]

which satisfies the periodic boundary condition and differential equation

(
∂τ + i

θ

T

)
GF (τ, τ ′) = δ (τ − τ ′)

3.5 Vacuum bubble

The vacuum bubble amplitude is the path integral without vertex operator

insertions. In the present case, it is the product of two parts. One is the path

integral over the coordinate scalars (i.e. X) and the coordinate ghosts and the

other is the path integral over the SUSY partners (i.e. ψ and ψ̄) and SUSY

ghosts. The first part is exactly the same as the vacuum bubble amplitude in

scalar case, while the second part is new and we now discuss.
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3.5.1 Trees

For a tree level worldgraph (including the worldline), this path integral is

always trivially 1. In the worldline approach, since we always decompose a

worldgraph into the worldlines of particles, we only need to know this vacuum

bubble. In the worldgraph approach, this is the appropriate vacuum bubble

for all tree amplitudes.

3.5.2 One-loop

To use worldgraph approach for one-loop amplitudes, we need to know the

1-loop vacuum bubble. It is can be computed through mode expansion on a

circle with periodic boundary condition:

Det

(
∂τ + i

θ

T

)D−2

=
[
2i sin

(
θ
2

)]D−2

where D comes from the ψψ̄ integration and −2 comes from SUSY ghosts.

3.6 Amplitudes

Now we are ready to calculate Yang-Mills amplitudes. As we have mentioned

there are two equivalent routes to proceed from now. One (the worldline

approach) is to always consider an arbitrary worldgraph as being constructed

from worldlines of the particles and one uses only the Green function of ψψ̄ on

a line, and the other (the worldgraph approach) is to consider the worldgraph

as a 1D topological space and one uses Green function of ψψ̄ on different

topology. In both approaches, rules of calculating amplitudes beyond 1-loop

level are not known when this thesis is written.

3.6.1 Worldline approach

In the worldline approach, one starts by choosing a specific worldline, and then

inserts relevant vertex operators for external states. For YM theory, where the

worldline state is the same as external states, namely a vector, the choice for

worldline is less obvious. Previous work on the worldline formalism was geared
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Figure 3.3: Three diagrams to be calculated if one chooses to connect lines 1
and 4 as the worldline. The second diagram needs a pinch operator, and the
third diagram needs a vertex operator representing the tree attached to the
worldline.

toward the calculation of one-loop amplitudes, where the loop itself provides a

natural candidate for the worldline. This advantage is not present for tree or

higher-loop amplitudes. Furthermore, for higher-point tree graphs, calculating

the amplitude from the worldline requires sewing lower-point tree amplitudes

to the worldline. This is unsatisfactory from the viewpoint of first-quantized

perturbation theory.

In general, to calculate an n-point tree-level partial amplitude in the world-

line approach:

1. Choose a specific color ordering (e.g., 12...n). Label external lines

counter-clockwise.

2. Draw a worldline between any two of the external lines (e.g., line 1 and

line n) and connect all other external lines to this worldline in the following

three ways: (a) Use the linearized vertex operator V0 defined in section 3.3.

(b) Use a vertex operator that is quadratic in background fields (“pinching”).

This quadratic vertex operator (“pinch operator”) can be derived from eq.(3.8)

by extending the field strength to contain the non-abelian terms and takes the

form

v(ij) = εiaεjbc
(
ψ̄bψa − ψ̄aψb

)
ei(ki+kj)·X

(c) Have the external lines first form a lower-point tree graph and then con-

nect to the worldline through either of the two vertex operators mentioned

previously. This corresponds to replacing Aa = εaeik·X with the non-linear

part of the solution to the field equations that the background field satisfies.

For example, for a four-point tree amplitude there are the three graphs shown

in fig. 3.3, representing the three different ways external fields can attach to

the worldline.
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For lower-point graphs it is possible to choose the worldline in such a way

that only linear vertex operators are required. We will show this in our actual

computation for the four-point amplitude.

3. For each of the diagrams from above, insert three fixed vertex operators

(respectively fixed at τ = ∞, 0,−∞). Two of them represent the initial and

final external states that were connected to form the worldline, while the

remaining one can be any of the operators described above. For example, one

has:

V (n)(∞)V (2)(0)V (1)(−∞) or V (n)(∞)v(32)(0)V (1)(−∞)

where the superscript (i) represents the momentum and polarization vector of

the external line i.

4. Insert the remaining vertex operators as the integrated ones, e.g.,

ˆ

W (i)
I or

ˆ

v(ij)

with the integration regions so chosen that the diagram is kept planar.

5. Evaluate the expectation value with respect to the Yang-Mills ghost

vacuum.

The fact that one needs to calculate lower-point tree graphs for a general

tree graph is unsatisfactory, since one should be able to calculate an arbitrary-

point amplitude without the knowledge of its lower-point counterparts. This

was less of a problem in the previous one-loop calculations, since one can claim

that the method was really for 1PI graphs, and therefore sewing is necessary to

calculate graphs that are not 1PI. It is more desirable to be able to calculate

any amplitude with the knowledge of just the vertex operators and Green

functions. This will be the aim of the worldgraph approach, which we leave to

the next subsection. We first proceed to show how to calculate 3- and 4-point

trees, and one-loop amplitudes, by the worldline approach.

In the 3-point case, we connect line 1 and line 3 as the worldline. The three

vertex operators are respectively fixed at τC → ∞, τB = 0 and τA → −∞.

Note that we need one c ghost to saturate the zero-mode and give a non-
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vanishing expectation value:

A3 =
〈
V (3) (τC)V

(2) (τB)V
(1) (τA)

〉
(3.12)

=
〈[

cW (3)
I (τC)

] [
W (2)

II (τB)
] [

W (1)
II (τA)

]〉

+
〈[

W (3)
II (τC)

] [
cW (2)

I (τB)
] [

W (1)
II (τA)

]〉

+
〈[

W (3)
II (τC)

] [
W (2)

II (τB)
] [

cW (1)
I (τA)

]〉

The first term and the third term vanish due to ε · Ẋ in WI contracting with

the eik·X in the other two WII’s, which are proportional to ε3 · k3 and ε1 · k1
respectively, and vanish in the Lorenz gauge. The remaining term becomes

A3 =
〈[

W (3)
II (τC)

] [
cW (2)

I (τB)
] [

W (1)
II (τA)

]〉
(3.13)

= −ε3aε2cε1d
〈[(

γψ̄a + γ̄ψa
)
eik3·X

]
τC

× c
[(
kc
1 + (ψ̄bψc − ψ̄cψb)k2b

)
eik2·X

]
τB

[(
γψ̄d + γ̄ψd

)
eik1·X

]
τA

〉

= − [(ε3 · ε1)(ε2 · k3) + (ε1 · ε2)(ε3 · k1) + (ε2 · ε3)(ε1 · k2)]

As usual (see, e.g., [15]), the contractions among the exponentials give an over-

all factor of e−
∑

A≤i<j≤C ki·kjGB(τi−τj) in the final result, but this factor equals 1

if we go on-shell.

For the 4-point amplitude (with color-ordering 1234), one can calculate

the three diagrams in fig. 3.3, but as we have mentioned, one can simplify the

calculation by choosing a worldline between line 1 and line 3. In this case,

there is only one diagram to be calculated (fig. 3.4), and there is only one

integrated vertex operator — line 4. We fix the other three as τD → ∞, τC = 0

and τA → −∞, and the integrated vertex has integration region τD ≥ τB ≥ τA.

We then have:
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Figure 3.4: If one chooses to connect line 1 and line 3 as the worldline,
there is only one diagram to be calculated. There is no need for pinch or
more complicated operators. Note that line 4 is the integrated vertex and the
integration region can be from −∞ to +∞, still keeping the graph planar.

A4 =

〈[
V (3) (τD)

] [
V (4) (τC)

] [ˆ τD

τA

W (2)
I (τB) dτB

] [
V (1) (τA)

]〉
(3.14)

=

〈[
cW (3)

I (τD)
] [

W (4)
II (τC)

] [ˆ τD

τA

W (2)
I (τB) dτB

] [
W (1)

II (τA)
]〉

+

〈[
W (3)

II (τD)
] [

cW (4)
I (τC)

] [ˆ τD

τA

W (2)
I (τB) dτB

] [
W (1)

II (τA)
]〉

+

〈[
W (3)

II (τD)
] [

W (4)
II (τC)

] [ˆ τD

τA

W (2)
I (τB) dτB

] [
cW (1)

I (τA)
]〉

The first and third term again vanish, for the same reason as in the three-

point case. The remaining term can be written in two parts by separating the

integration region:

A4 = A4s + A4t (3.15)

=

〈[
W (3)

II (τD)
] [

cW (4)
I (τC)

] [ˆ τC

τA

W (2)
I (τB) dτB

] [
W (1)

II (τA)
]〉

+

〈[
W (3)

II (τD)
] [ˆ τD

τC

W (2)
I (τB) dτB

] [
cW (4)

I (τC)
] [

W (1)
II (τA)

]〉

Actually one can see these two terms as representing the s-channel and t-
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Figure 3.5: Two integration regions. The integrated vertex sits at 2.

channel graphs from the second-quantized approach (see fig. 3.5). The τ ’s are

time ordered according to the order they appear on the worldline. The results

are:

A4s = −2

s





− s
4 (ε1 · ε3) (ε2 · ε4)−

u
2 (ε1 · ε2) (ε4 · ε3)

+ (ε2 · k1) (ε4 · k3) (ε1 · ε3) + (ε1 · k2) (ε3 · k4) (ε2 · ε4)
+ (ε1 · k3) (ε2 · k4) (ε3 · ε4) + (ε4 · k2) (ε3 · k1) (ε1 · ε2)
− (ε1 · k2) (ε4 · k3) (ε2 · ε3)− (ε3 · k4) (ε2 · k1) (ε1 · ε4)
− (ε1 · k4) (ε2 · k3) (ε3 · ε4)− (ε3 · k2) (ε4 · k1) (ε1 · ε2)





A4t = −2

t





− t
4 (ε1 · ε3) (ε2 · ε4)−

u
2 (ε1 · ε4) (ε2 · ε3)

+ (ε1 · k4) (ε3 · k2) (ε2 · ε4) + (ε2 · k3) (ε4 · k1) (ε1 · ε3)
+ (ε1 · k3) (ε4 · k2) (ε2 · ε3) + (ε2 · k4) (ε3 · k1) (ε1 · ε4)
− (ε1 · k2) (ε4 · k3) (ε2 · ε3)− (ε2 · k1) (ε3 · k4) (ε1 · ε4)
− (ε1 · k4) (ε2 · k3) (ε3 · ε4)− (ε3 · k2) (ε4 · k1) (ε1 · ε2)





The sum of the above two parts is exactly the 4-point Yang-Mills tree ampli-

tude. Note that we don’t need the pinch operator in this calculation. This is

because there cannot be a pinch operator representing line 2 and line 4, since

they are not adjacent in the color ordering.

It is straightforward to generalize this method to the calculation of 1-loop

1PI diagrams. The new feature in this case is that one must ensure U(1)

neutrality inside the loop. One can think of the diagram as connecting both

ends of a tree diagram, and only sum over U(1) neutral states. The U(1)
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neutral states are written as:

|A, p〉 =






|a, p〉 = γψ̄a
∣∣0̃
〉
⊗ |p〉

|ghost, p〉 =
∣∣0̃
〉
⊗ |p〉

|antighost, p〉 = γγ̄
∣∣0̃
〉
⊗ |p〉

where p is the momentum of the state, and the last two states are the Faddeev-

Popov ghosts for background gauge fixing. The general expression for the

amplitude of n-point 1-loop 1PI diagrams is then

A1−loop
n =

∑

A,p

ˆ ∞

0

dT 〈A, p|V (n) (τn)
n−1∏

i=1

ˆ

τi−1≤τi≤τi+1

dτiW
(i)
I (τi) |A, p〉

+diagrams with pinch operators (3.16)

where we define τ0 = 0 and fix τn = T . Note that at one-loop we don’t have

the freedom to choose worldline (it should always be the loop), so one cannot

avoid using the pinch operators.

We postpone an actual calculation to the next subsection, where we will

calculate the two-point contribution to the effective action by using the world-

graph approach.

3.6.2 Worldgraph approach

For the three-point tree graph fig. 3.1 we start with:

A3 =
〈
V (3) (τ3)V

(2) (τ2)V
(1) (τ1)

〉
(3.17)

=
〈[

cW (3)
I (τ3)

] [
W (2)

II (τ2)
] [

W (1)
II (τ1)

]〉

+
〈[

W (3)
II (τ3)

] [
cW (2)

I (τ2)
] [

W (1)
II (τ1)

]〉

+
〈[

W (3)
II (τ3)

] [
W (2)

II (τ2)
] [

cW (1)
I (τ1)

]〉
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Using the above one can compute eq. (3.17). The first term becomes:

A3−1 = 〈[cWI (τ3)] [WII (τ2)] [WII (τ1)]〉 (3.18)

= −ε3aε2cε1d〈c[iDXa + (ψ̄bψa − ψ̄aψb)k3b]τ3

×[γψ̄c + γ̄ψc]τ2 [γψ̄
d + γ̄ψd]τ1e

ik1·Xτ1eik2·Xτ2eik3·Xτ3 〉

= −ε2cε1d〈[−(ε3 · k2) + (ψ̄bψa − ψ̄aψb)ε3ak3b]τ3

×[ψ̄c(τ2)ψ
d(τ1) + ψc(τ2)ψ̄

d(τ1)]〉

= 2(ε3 · k2)(ε2 · ε1) + 2(ε2 · k1)(ε3 · ε1) + 2(ε1 · k3)(ε2 · ε3)

A similar derivation gives the second and third terms:

A3−2 = 〈[WII (τ3)] [cWI (τ2)] [WII (τ1)]〉 (3.19)

= 2(ε3 · k2)(ε2 · ε1) + 2(ε2 · k1)(ε3 · ε1) + 2(ε1 · k3)(ε2 · ε3)

A3−3 = 〈[WII (τ3)] [WII (τ2)] [cWI (τ1)]〉

= 2(ε3 · k2)(ε2 · ε1) + 2(ε2 · k1)(ε3 · ε1) + 2(ε1 · k3)(ε2 · ε3)

Note that the three terms are the same, which respects the symmetry of the

graph.

For the 4-point amplitude we have two graphs (s channel and t channel, see

fig. 3.2) constructed by connecting two three-point worldgraphs on a worldline.

The worldline in the middle is actually a modulus of the theory, and one must

insert a b ghost. We focus on the s-channel graph; the t-channel graph can

later be derived by exchanging the external momenta and polarizations in the

s-channel amplitude. We wish to derive

A4s =

ˆ ∞

0

dT
〈
V (4)(τ4)V

(3)(τ3)b(T )V
(2)(τ2)V

(1)(τ1)
〉

(3.20)

=

ˆ ∞

0

dT





〈
W (4)

II (τ4)cW
(3)
I (τ3)b(T )cW

(2)
I (τ2)W

(1)
II (τ1)

〉

+
〈
cW (4)

I (τ4)cW
(3)
I (τ3)b(T )W

(2)
II (τ2)W

(1)
II (τ1)

〉

+
〈
cW (4)

I (τ4)W
(3)
II (τ3)b(T )cW

(2)
I (τ2)W

(1)
II (τ1)

〉

+
〈
cW (4)

I (τ4)W
(3)
II (τ3)b(T )W

(2)
II (τ2)cW

(1)
I (τ1)

〉

+
〈
W (4)

II (τ4)cW
(3)
I (τ3)b(T )W

(2)
II (τ2)cW

(1)
I (τ1)

〉

+
〈
W (4)

II (τ4)W
(3)
II (τ3)b(T )cW

(2)
I (τ2)cW

(1)
I (τ1)

〉
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Equipped with the Green functions one can compute eq. (3.20). We do the

bc contractions first. Each term has two such contractions; using the above

Green functions we see that the second and last terms cancel. We then have:

A4s =

ˆ ∞

0

dT





〈
cW (4)

II (τ4)W
(3)
I (τ3)W

(2)
I (τ2)W

(1)
II (τ1)

〉

−
〈
cW (4)

I (τ4)W
(3)
II (τ3)W

(2)
I (τ2)W

(1)
II (τ1)

〉

+
〈
cW (4)

I (τ4)W
(3)
II (τ3)W

(2)
II (τ2)W

(1)
I (τ1)

〉

−
〈
cW (4)

II (τ4)W
(3)
I (τ3)W

(2)
II (τ2)W

(1)
I (τ1)

〉





Expanding out all possible contractions and implementing the Green functions

and noting that

〈DX(τ1)DX(τ3)〉 = −2δ(T ), 〈DX(τ2)DX(τ4)〉 = −2δ(T )

〈DX(τ1)DX(τ4)〉 = +2δ(T ), 〈DX(τ2)DX(τ3)〉 = +2δ(T )

With these Green functions in hand we arrive at the following s-channel am-

plitude:

A4s =
8

s





+ s
4 (ε1 · ε4) (ε2 · ε3)−

s
4 (ε2 · ε4) (ε1 · ε3)− ( s4 +

u
2 ) (ε1 · ε2) (ε4 · ε3)

+ (ε2 · k1) (ε4 · k3) (ε1 · ε3) + (ε1 · k2) (ε3 · k4) (ε2 · ε4)
+ (ε1 · k3) (ε2 · k4) (ε3 · ε4) + (ε4 · k2) (ε3 · k1) (ε1 · ε2)
− (ε1 · k2) (ε4 · k3) (ε2 · ε3)− (ε3 · k4) (ε2 · k1) (ε1 · ε4)
− (ε1 · k4) (ε2 · k3) (ε3 · ε4)− (ε3 · k2) (ε4 · k1) (ε1 · ε2)





A similar calculation can be done for the t-channel graph, and the result is

simply changing the labeling of all momenta and polarizations in the s-channel

result according to:
s → t

1 → 4

2 → 1

3 → 2

4 → 3
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We arrive at:

A4t =
8

t





+ t
4 (ε4 · ε3) (ε2 · ε1)−

t
4 (ε2 · ε4) (ε1 · ε3)− ( t4 +

u
2 ) (ε1 · ε4) (ε2 · ε3)

+ (ε1 · k4) (ε3 · k2) (ε2 · ε4) + (ε2 · k3) (ε4 · k1) (ε1 · ε3)
+ (ε1 · k3) (ε4 · k2) (ε2 · ε3) + (ε2 · k4) (ε3 · k1) (ε1 · ε4)
− (ε1 · k2) (ε4 · k3) (ε2 · ε3)− (ε2 · k1) (ε3 · k4) (ε1 · ε4)
− (ε1 · k4) (ε2 · k3) (ε3 · ε4)− (ε3 · k2) (ε4 · k1) (ε1 · ε2)





Adding the two channels again gives the complete 4-point amplitude.

Our final example is to demonstrate a worldgraph calculation of the two-

point contribution to the effective action. At one loop there are two zero-

modes, one modulus (the circumference of the loop) and one Killing vector.

The proper insertions for the vacuum are:

〈
0̃|bc|0̃

〉
∼ 1

In general, the n-point 1-loop 1PI amplitude can thus be written as

A1−loop
n = gn

ˆ ∞

0

1

TD/2
dT

〈
δ
[
JU(1)

]
bV (n) (τn)

n−1∏

i=1

ˆ

τi−1≤τi≤τi+1

dτiW
(i)
I (τi)

〉

+diagrams with pinch operators

= gn
1

2π

ˆ ∞

0

1

TD/2
dT

ˆ 2π

0

dθ
[
2i sin

(
θ
2

)]D−2

×
〈
W (n)

I (τn)
n−1∏

i=1

ˆ

τi−1≤τi≤τi+1

dτiW
(i)
I (τi)

〉

+diagrams with pinch operators (3.21)

We’ve added the coupling constant g, but omitted group theory factors, such as

a trace and a factor Nc of the number of colors for the planar contribution. The

XX contraction should be calculated by the 1-loop bosonic Green function:

〈
Xa (τ)Xb (τ ′)

〉
= ηabGB (τ − τ ′) = ηab

[
−1

2
|τ − τ ′|+ (τ − τ ′)2

2T

]

Thus the two-point contribution to the effective action is (including the

usual − sign for the action, 1
2 for permutations, and group theory factor for
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this case)

Γ1−loop
2 = −g2Nc

4π

ˆ ∞

0

1

TD/2
dT

ˆ 2π

0

dθ
[
2i sin

(
θ
2

)]D−2

×
ˆ T

0

dτ
〈
W (2)

I (T )W (1)
I (τ)

〉

= −g2Nc

ˆ ∞

0

1

TD/2
dT

×
ˆ T

0

dτ





(
δ (T − τ)− 1

T

)
(ε1 · ε2)

+
(
1
2 −

τ
T

)2
(ε2 · k1) (ε1 · k2)

− (ε2 · k1) (ε1 · k2) + (k1 · k2) (ε1 · ε2)





×exp
[
1
2k1 · k2

(
T − τ − (T−τ)2

T

)]

= −g2Nc

(
k2
1

2

)−ε (
1− 1

12

)
Γ (ε)

×[(ε1 · ε2)(k1 · k2)− (ε1 · k2)(ε2 · k1)]

= −11

24
tr

{
F ab
1

[
1

ε
− log

(
1

2
k2
1

)]
F2ab

}
(3.22)

In the final line we have used dimensional regularization D = 4 − 2ε, and

dropped the term with the δ function, which gives the tadpole contribution.

Modified minimal subtraction was used, with the conventions of ref. [28]. Note

that the − 1
12 piece comes from the scalar graph while the 1 comes from terms

with the fermion Green function. The diagram with pinch operator does not

contribute in this case.
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Chapter 4

Outlook

4.1 Multiloop Yang-Mills

It is naturally desirable to see how the first-quantized method works for mul-

tiloop amplitudes of Yang-Mills theory. In this case, one will probably need to

insert extra operators other than the vertex operators, which are similar to the

so-called picture changing operators in string theory. Along the direction of

the worldline approach, one has to decompose the multiloop worldgraph into

several worldlines and calculate the amplitudes on these worldlines separately

(using only the worldline Green function). Along the direction of the world-

graph approach, one has to solve for the various fermionic Green function on

worldgraphs with different topologies. The form of the Green function can be

more and more complicated as the number of loops increase. Whether there

exists a general form of the fermionic Green function, just like the case of

bosonic Green function, is an interesting open question.

4.2 Gravity

The worldgraph method can also be applied to study the gravity amplitudes.

The first step is to study the spectrum of the N = 4 spinning particle and

derive the vertex operator. Then the Green function and vacuum bubble will

be straightforward generalizations from the Yang-Mills case.
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4.3 Super-Yang-Mills

In principle, the worldgraph method can be naturally applied to calculate the

super-Yang-Mills amplitudes. However, there are some obstacles to overcome.

The covariant quantization of superparticles will introduce a infinite pyramid

of ghosts and anti-ghosts, and the appropriate vertex operators in various

pictures are not clearly known yet. Further, the vertex operators will probably

depend on the whole ghost pyramid (i.e. infinite number of fields), in addition

to knowing the Green function of each of these fields, one also needs to figure

out a compact formula for performing contractions between two infinite sums

of fields.
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