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Liusuo Wu

Doctor of Philosophy

in

Physics

Stony Brook University

2013

Quantum phase transitions have attracted a great deal of interest
in the study of condensed matter physics. Normally, this refers
to continuous transitions that occur at zero temperature (T = 0),
where the correlation length and time scales diverge, and universal
scaling is observed close to the Quantum Critical Point (QCP).
Quantum critical scaling differs from its classical counterpart in
that the spatial dimension d is replaced by an effective dimension
d + z, where z is the dynamical critical exponent. In this thesis,
we will discuss the search for quantum criticality in magnetic
compounds: Yb3Pt4, YFe2Al10 and Yb2Pt2Pb.

Yb3Pt4 is a local moment antiferromagnet (AF) that orders at
2.4 K in zero field. The AF order can be suppressed to zero
temperature by a magnetic field of about 1.9 T. A field-temperature
phase diagram was established, and it indicates that Yb3Pt4 can
be tuned to a critical end point (CEP) at T = 0. The magnetic
properties could be explained well by the mean field theory, and
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it suggests that Yb3Pt4 was tuned to an AF-QCP with effective
dimension d+ z > 4.

A remarkable behavior of the quantum critical systems is the
critical scaling near the QCP, where Fermi liquid (FL) physics
usually break down. In the transition metal YFe2Al10, strong
divergencies in magnetic susceptibility (χ ∼ T−1.4) and magnetic
specific heat (CM/T ∼ −log T ) were observed. Universal
scaling was found in the magnetic susceptibility (dχ/dT =
B−1.4ϕ(T/B0.6)) and specific heat (∆CM/T = φ(T/B0.6)). This
indicates that YFe2Al10 may be located close to a QCP without
tuning. Further scaling analysis indicates that the spatial
dimension d is equal to the dynamical exponent z at this QCP.

Yb2Pt2Pb is a frustrated magnet that crystallizes in a 2D Shastry-
Sutherland lattice (SSL). Elastic and inelastic neutron scattering
experiments on aligned single crystals will be discussed. Spinon
like excitations with broad continuum were observed in zero fields,
indicating that the one-dimensional Luttinger liquid may be the
dominant physics in this material. non-Fermi liquid behaviors were
also observed near the field induced AF-QCP, indicating heavy
fermion physics may also be relevant.
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calculation. The red lines are the measured MCE curves. The
empty circles (◦) are the B − T phase boundary determined
from the field dependent specific heat. The dashed line is a
guide for the eyes. . . . . . . . . . . . . . . . . . . . . . . . . . 76

xv



3.11 Schematic phase diagrams for field tuned antiferromagnets. (a)
The phase line of a field tuned antiferromagnet remains second
order at all fields (solid line), ending at a continuous transition
with TN = 0, i.e. a quantum critical point (•). (b) The
phase line of a field tuned antiferromagnet is initially second
order(solid line), but this phase line terminates at a tricritical
point(N). For smaller values of TN, the phase line is first order
(dashed line), ending at a first order transition where TN = 0,
i.e. a quantum critical endpoint (◦). (c) An intermediate
situation between (a) and (b), where the first order transition
line in (b) has shrunk to a single point with TN = 0, a quantum
critical endpoint (◦). For all nonzero values of TN, the phase
line is continuous but strongly modified from the second order
line shown in (a). (d) A three dimensional phase diagram with
no magnetic order for T > 0 at any value of field or other non-
thermal variable Γ, such as pressure. There is a quantum critical
endpoint (◦) in the T = 0 B − Γ plane, that separates a first
order line (dashed line) from a line of continuous transitions
(solid line) that ends in a quantum critical point for B = 0
(•). The red vertical arrow indicates the effect of lowering
temperature in a metamagnet, defined as a system that has
no long-ranged order for T ̸= 0, but positioned in the B − Γ
parameter space close to a quantum critical endpoint(◦). . . . 78

3.12 (a) Zero field temperature dependence of the electrical
resistivity ρ(T ) in Yb3Pt4. (b) The temperature dependencies
of ρ(T ) measured in different magnetic fields from 0 T
to 4.0 T at low temperatures. The red arrows indicate
the antiferromagnetic transitions at each field B ≤ 1.85 T.
(c) The temperature derivative of the electrical resistivity
dρ/dT in different fixed fields, as indicated. Red arrows
indicate values of TN(B), taken from the maxima in dρ/dT .
(d) Field - temperature phase diagram of Yb3Pt4. The
antiferromagnetic ordering temperatures TN(B) extracted from
the temperature(�) and field (N) dependent resistivities are in
good agreement with the phase line determined from specific
heat(◦) measurements. Solid black line is a fit to a mean-field
expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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3.13 (a) Field dependencies of the electrical resistivity ρ measured
at different temperatures from 0.1 K to 3.0 K, as indicated.
Red arrows indicate the antiferromagnetic transitions. (b)
Magnetoresistivity ρ (•, left axis) measured at 0.1 K plotted
together with the magnetization (red solid line, right axis)
measured at 0.2 K. Vertical dashed lines delineate the step like
kink around the critical field ∼ 1.85 T. . . . . . . . . . . . . . 86

3.14 (a) The resistivity ρ−ρ0 as a function of T 2 in different magnetic
fields as indicated. Red arrows indicate the antiferromagnetic
transitions, taken from the maxima in dρ/dT . (b) The
coefficient of the quadratic temperature dependence A as a
function of magnetic field B. Vertical dashed line indicates the
critical field BCEP. . . . . . . . . . . . . . . . . . . . . . . . . 88

3.15 (a) Plot of the normalized magnetoresistivities as functions of
the normalized magnetizations M/MS measured at different
temperatures, where ∆ρ(B) = ρ(B) − ρ(B = 0), and MS

is the saturation magnetization defined in the text. The
red arrows indicate the onset of antiferromagnetic order for
each curve, highlighting that this relationship fails within the
antiferromagnetic phase. (b) The data from (a) collapse onto a
single curve with a slope of 2, as indicated by the red line. . . 89

3.16 (a) Field dependencies of the magnetization M were measured
at different temperatures, and then plotted as functions of B/T .
(b) The temperature dependencies of the electrical resistivity ρ
were measured in different magnetic fields from 1.0 T to 4.0 T,
and then plotted as functions of T/B. Red arrows indicate the
onset of antiferromagnetic order, showing that the resistivity
data collapse onto a single curve in the paramagnetic phase. . 90
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3.17 (a) The field dependencies of the specific heat CP were obtained
at different fixed temperatures, and were then plotted as
functions of B/T . The red arrows indicate the onset of
antiferromagnetic order, and the red line is the Schottky
expression for the specific heat of a two level system with
g = 2.5. (b) An expanded view of the field dependencies of the
specific heat CP measured from 0.3 K to 1.9 K. The red arrows
indicate the onset of antiferromagnetic order. (c) The lowest
temperature where B/T scaling was observed in the specific
heat CP (red triangles) is virtually indistinguishable from the
antiferromagnetic phase line TN(B) (black circles) previously
determined from specific heat measurements. The B/T scaling
is seen in the shaded region that extends over a very wide
range of fields and temperatures where antiferromagnetic order
is absent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.18 (a)−∆M/∆T vs B calculated as described in the text, for
different fixed temperatures. (b) The temperature dependencies
of the real part of the ac magnetic susceptibility χ′

ac, measured
at different fields. The red arrows in (a) and (b) mark the
positions of maxima. . . . . . . . . . . . . . . . . . . . . . . . 93

3.19 (a) Magnetic field dependencies of the electrical resistivity ρ(B)
measured at different fixed temperatures, as indicated. The
black arrow indicates the antiferromagnetic transition, and red
arrows indicate the position of the negative peak in dρ/dB (b).
(c) The full width at half maximum(FWHM) of the dρ/dB peak
decreases linearly with decreasing temperature, and within the
accuracy of our analysis extrapolates to zero for T → 0 (red
dashed line). Inset: The FWHM is defined as the crossover
width at half maximum (as indicated by the red horizontal
arrow) of the dρ/dB peak, demonstrated here for T = 2.6
K. (d) The field dependencies of the crossover temperatures
determined from −∆M/∆T (TM, red diamonds)), ac magnetic
susceptibility (Tχ, blue triangles), dρ/dB(Tρ, green stars), and
the Zeeman energy T∆ = ∆/kB (black triangles) determined
from the high temperature specific heat measurement. Solid
line is the antiferromagnetic phase boundary TN(B) taken from
fig. 3.12d. The dashed red lines are guides for the eye, indicating
that the three different temperature scales have the same
slope(∆T/∆B ≃ 2.6 K/T). . . . . . . . . . . . . . . . . . . . . 95
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3.20 Temperature dependencies of the specific heat CP, measured
at different fields. The red dashed line is the measured B =
0 specific heat of the isostructural and nonmagnetic analog
compound Lu3Pt4, which gives an estimate of the phonon
contribution to the specific heat (see text). (b) The temperature
dependencies of the specific heat after subtraction of the phonon
contribution CPh and the electronic contribution γ(B)T . The
solid lines are fits to the Schottky expression, described in the
text. (c) The Sommerfeld coefficient γ that was obtained from
the fits in (b) is almost field independent. Vertical dashed line
indicates BCEP = 1.9 T, where antiferromagnetic order vanishes. 97

3.21 FieldB - hybridization Γ phase diagram for T ̸= 0 (a) and T = 0
(b). The antiferromagnetic phase line BN(Γ) has a continuous
region that terminates for B = 0, Γ = ΓQCP (solid line) and
a first order part (dashed line) that terminates at Γ → 0,
BCEP, separated by a tricritical point (White circle, Γ = ΓTCP).
Regions I and II are antiferromagnetically ordered, regions
III,IV, and V are not. Dashed line BC(Γ) separates regions II
and III, having localized Yb moments, from Regions I, IV, and
V, where there are differing degrees of electronic localization
(see text). The line BM(Γ) separates regions IV (light mass
Fermi liquid) from region V (heavy mass Fermi liquid). It is
not known where BM(Γ) intersects the antiferromagnetic phase
line BN(Γ) (dashed line). The evolution of the T = 0 states
with increasing Γ (decreasing pressure) from local moment
AF magnets (Yb3Pt4) to HF AF quantum critical compound
(YbRh2Si2) to mixed valence compounds (YbCu5−xAgx), as
indicated by vertical arrows. . . . . . . . . . . . . . . . . . . 100

4.1 Left: A block shaped YFe2Al10 single crystal grow from the Al
flux with the principal axis a and b as indicated. Right: Crystal
structure of YFe2Al10 . The Fe atoms are sitting in the center
of polyhedra like cages made from Al and Y atoms. [78, 210] 105

4.2 (a)Temperature dependencies of ac susceptibility with the ac
field Bac = 4.17 Oe applied both parallel and perpendicular
to the b axis, as indicated. Inset: The ratio of the ac
susceptibility along two different directions. (b) The inverse
of the temperature-dependent parts of the susceptibility display
Curie-law temperature dependencies (red dashed lines) for B⊥b
and B ∥ b. The inset shows that the Curie law extends up to
750 K in a crystal with indefinite orientation. [78] . . . . . . 107
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4.3 (a) Magnetization M as a function of field B⊥b, at indicated
temperatures. (b) Data from (a), plotted as functions of B/T .
Solid line is the S = 1/2 Brillouin function, with a scaled
magnitude. [78] . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 (a) As-measured specific heat C/T for YFe2Al10 (•) and the
rescaled specific heat of YRu2Al10 (◦). The red solid circles
(•) are the extract magnetic contribution to the specific heat
of YFe2Al10 . Details explained in the text. (b) Magnetic
contribution of the specific heat CM/T for YFe2Al10 . Red
dashed line indicates Sommerfeld coefficient γ ∼ 9 mJ/mol Fe
K2. [78] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 Log-log plot (◦) of the zero field specific heat and the semi-log
plot (•) of the subtract specific heat CM(0T )/T − CM(4T )/T
as a function of temperature T . . . . . . . . . . . . . . . . . . 111

4.6 (a)Temperature dependent ac magnetic susceptibility χ′

measured in different dc fields from 0 T to 2.0 T with Bac = 4.17
Oe. The red line is a fit as χ′(T ) ∼ T−γ for temperature T < 10
K, where γ = 1.4. (b) Temperature dependent dc susceptibility
M/B measured in fields up to 6.0 T. The red line is the same fit
as shown above in fig.1a. (c) Field dependence of the magnetic
susceptibility χ′ at different temperatures as indicated. The red
line indicates the magnetic susceptibility decreases as a function
of χ′(B) ∼ B−0.95 at 1.8 K. All the measurements here were
performed with magnetic fields along the a axis. . . . . . . . 112

4.7 Scaling observed for the dc and ac magnetic susceptibility over
several decades of the scaling variable T/B0.6. The red line
is the fitting based on the proposed scaling function of the
magnetization, as explained in the later sections. (a), and (c)
are the log-log plot of the dc and ac magnetic susceptibility,
while (b) and (d) are the semi-log plot of the same data in (a)
and (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
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4.8 (a)Temperature dependent specific heat measured in different
magnetic fields (0 T 6 B 6 7.0 T) perpendicular to the b
axis. (b)Scaling of the field dependent specific heat (∆CM/T =
(C(B, T )−C(0, T ))/T ) as a function of T/B0.6 in the field and
temperature range with 0.4 K< T < 10 K and 0 T< B 6 7 T.
Red line is the fitting based on the proposed scaling function
of the free energy as described in the later sections. (c) Field
dependent specific heat measured in different temperature from
0.5 K to 5 K. The arrows indicates crossovers from the quantum
critical region to the high field Fermi liquid state. (d) A
logarithmic decrease of the specific heat was observed at 0.55 K
in high fields from about 1 T to 9 T. . . . . . . . . . . . . . . 116

4.9 Field temperature (B−T ) phase diagram of YFe2Al10 with field
B along the a direction. The crossover lines are defined through
the peak position of CM(B, T )/T (�), dc magnetization
−dM/dT (N), and ac magnetic susceptibility χ′ (�). . . . . . 118

4.10 (a)Plots of −dM/dT as a function of T in different fixed
fields B. There are peaks in the temperature dependencies of
dM/dT (a) and also in χac=dM/dH (b) that shift to higher
temperatures with increasing field, as indicated by the arrows.
Inset: Peak position T ∗

dc plotted as a function of B follows
the scaling function 4.17 with a = 4.6, and γ = 1.4. (b)
Plots of the temperature dependent ac magnetic susceptibility
χac = dM/dB in different magnetic fields B. Inset: Peak
position T ∗

ac plotted as a function of B follows the scaling
function 4.18 with a = 4.6. . . . . . . . . . . . . . . . . . . . 123

4.11 The calculated magnetocaloric effect Γ/B as a function of
temperature at different fixed fields. Since the power law
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4.12 As measured thermal expansivity α of YFe2Al10 as function
of temperature in different magnetic fields. A small upturn
was observed at low temperatures, but otherwise α is field
independent. (Figure is courtesy of Manuel Brando [178].) . . 130

4.13 (a)Temperature dependent thermal expansivity α/T of
YFe2Al10 measured in magnetic fields as indicated. (b) Log-log
plot of the thermal expansio α/T of YFe2Al10 . A power law
divergence was observed at low temperatures with α/T ∼ T−1.5.
(Figure is courtesy of Manuel Brando [178].) . . . . . . . . . . 131
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4.14 (a)Temperature dependent dc magnetic susceptibility χdc =
M/B of LuFe2Al10 measured in 4.0 T with field along the
three principal crystal axes as indicated. (b) Temperature
dependence of the dc magnetic susceptibility χdc = M/B in
magnetic fields along the a axis from 0.1 T to 6.0 T. The
magnetic susceptibility is most divergent with fields along the
a direction, where a power law behavior χdc ∼ T−0.57 is found,
as indicated by the red lines. . . . . . . . . . . . . . . . . . . 134

4.15 (a) Magnetic field dependent magnetization M of LuFe2Al10
measured at different temperatures from 1.8 K to 100 K. (b) The
field dependent magnetization M at different temperatures as
functions of B/T . The red line is the re-scaled Brillouin function
assuming independent local moments with spin S = 1/2. . . . 135

4.16 Log-log plot (a) and semi-log plot (b) of the scaling curve of the
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4.17 Log-log plot (a) and semi-log plot (b) of the scaling curve of the
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variable T/B0.78. The red line is the fitting as explained in the
text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.18 Measured specific heat of LuFe2Al10 in different fields from 0
T to 9 T. The red line implies the logarithmic temperature
dependence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.19 Temperature dependent magnetization of YbFe2Al10 with field
1.0 T along the crystal a axis. A broad maximum was observed
around 410 K. The red line is the fit as explained in the text. 141

4.20 Temperature dependent specific heat of YbFe2Al10 measured in
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4.21 Temperature dependent magnetic susceptibility of YFe2Al10 ,
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4.23 (a) Temperature dependent resistivity of YFe2Al10 , LuFe2Al10
and YbFe2Al10 measured in zero field from 0.4 K up to 300
K. (b) As measured resistivity of YFe2Al10 , and the scaled
resistivity of LuFe2Al10 and YbFe2Al10 according to YFe2Al10 .
All the three curves behave in the same way from 300 K down
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resistivity ρ(T ) for YFe2Al10 measured at 0.5 K for both B∥a,
and B∥b directions, as indicated. [78] . . . . . . . . . . . . . 146

4.25 (a) B/T scaling of the dc magnetic susceptibility of
CeCu6−xAux as χ = T−0.75f(B/T ). Solid line is the scaling
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Scaling of the observed dc magnetization of β − YbAlB4. The
data were fitted to the scaling function φ(x) = Λx(A+x2)−1.25,
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5.1 Left: Sample holders for the single crystal neutron scattering
experiments at DCS in NCNR, NIST, and CNCS, SNS, Oak
Ridge. Six layers of Yb2Pt2Pb crystals were included in
the sample holder shown in the picture. For each layer,
Yb2Pt2Pb single crystals were aligned with the (110) direction
normal to the holder surface, with the neutrons scattering in
the (h, h, l) plane. A reference holder with Vanadium foil inside
was used for the normalization analysis. Right: Schematic
view of the configuration for both the DCS and CNCS neutron
scattering set ups. The sample holder was mounted with
vertical magnetic field B along the (h,−h, 0) direction. Limited
by the height of the magnet window, only neutrons scattering
from the sample within the angle θ are counted by the detector
within height H. This scattering angle θ was estimated by
knowing the distance D and height H as marked in the figure. 158

5.2 (a) A simplified crystal structure of Yb2Pt2Pb with Yb atoms
sitting at two Wyckoff sites: Yb1 (4f site) and Yb2 (4g
site). (b) Pairs of Yb nearest neighbor atoms are orthogonally
arranged to each other in the ab plane, which is topologically
equivalent to the Shastry-Sutherland Lattice (SSL). [66] . . . 160

5.3 Temperature dependent specific heat of Yb2Pt2Pb in zero field.
The phonon contribution has been estimated from the Debye
model, and subtracted from the measured specific heat. The full
entropy S = Rln2 of the ground doublet states is only recovered
for T ≃ 10 K, indicating that strong fluctuations exist above the
transition at 2.0 K. A sketch of the four CEF doublets is shown
in the inset, where the first excited states are about ∆1 ≃ 70 K
above the doublet ground states. [66] . . . . . . . . . . . . . . 161

5.4 Field dependent magnetization of Yb2Pt2Pb measured at T =
1.9 K, for B along the crystal (001), (110) and (100) axes as
marked. [66, 67] . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5 Two possible Yb spin configurations in the ab plane. The Yb
ions are divided into two sublattice with Ising spins along the
orthogonal (110) and (1-10) axes. The Ising spins are aligned
along the diagonal pair direction in (a), and are perpendicular
to the diagonal direction in (b). . . . . . . . . . . . . . . . . . 163
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5.6 (a) Magnetic field dependent dc magnetization (black line)
measured at 0.06 K with field along the (110) direction using
the Hall sensor magnetormeter. The red line is the field
derivative of the measured magnetization dM/dB. (b)Field-
Temperature phase diagram with fields B∥110 from the the
magnetization, specific heat, and MCE measurements. The
two dashed horizontal lines at TN1 ≃ 2 K, and TN2 ≃ 0.8 K
are determined from the temperature dependent resistivity and
specific heat measured in fields. [97] . . . . . . . . . . . . . . 164

5.7 Elastic neutron scattering pattern in the [H, H, L] plane taken
at CNCS at different temperatures (a) 1.5 K, (b) 1.8 K, (c) 2.0
K and (d) 2.5 K in zero fields. . . . . . . . . . . . . . . . . . 167

5.8 Temperature dependencies of the different elastic peak intensity
in zero fields. (0.2,0.2,1), (-0.2,-0.2,1), and (0.8,0.8,1) are the
three magnetic peaks, which develop rapidly below the 2 K
transition temperature, and (001) and (112) are two nuclear
peaks, whose intensities are almost independent of temperature. 168

5.9 Contour plots of the zero field elastic scattering intensity in the
[H, H, L] plane at temperatures (a) 1.5 K, (b) 2.1 K, (c) 3.0
K, and (d) 5.0 K with the 1.6 K, 4.75 T data subtracted as
background. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.10 Scattering intensity of the magnetic peak (0.8, 0.8, 1) at different
temperatures across the longitudinal (0.8, 0.8, l) (a), and the
transverse (h, h, 1) directions (b). The solid lines are fits to
the Lorentzians. (c) Temperature dependence of the fitted
peak intensity of the (0.8, 0.8, 1) magnetic peak along both
the (0.8, 0.8, l) and (h, h, 1) directions. (d) Log-log plot of
the fitting of the magnetic intensity I − I0 in relation to the
reduced temperature T − TN . The red lines in (c) and (d) are
fits to power law expressions as indicated. (e) Temperature
dependencies of the fitted full width at half maximum Γ along
the (0.8, 0.8, l) and (h, h, 1) directions. (f) Plot of the correlation
length ξ = 1/Γ as a function of temperature near the phase
transition at 2.0 K. . . . . . . . . . . . . . . . . . . . . . . . . 170

5.11 Elastic neutron scattering pattern in the [H, H, L] plane taken
at CNCS in different fields (a) 0.2 T, (b) 0.7 T, (c) 0.8 T, (d)
1.0 T, (e) 2.0 T, and (f) 3.0 T at temperatures around 1.5 K. . 172

5.12 Magnetic field dependence of the scattering intensity of the peak
(0.8, 0.8, 1) at temperatures around 1.5 K. The red line is the
fit to the power law expression as indicated. . . . . . . . . . . 173
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5.13 (a)Elastic neutron scattering intensity of the (0, 0, 2) peak as
a function of energy, measured at 1.5 K in fields 0 T, 2 T, and
4 T as indicated. (b)Elastic neutron scattering intensity of the
(1, 1, 2) peak as a function of energy measured at 1.5 K in fields
0 T, 2 T and 4 T, as indicated. (c)Elastic neutron scattering
intensity of peak (1, 1, 1) as function of energy measured at
1.5 K in fields 0 T, 1 T, and 4 T as indicated. The solid lines
in (a), (b) and (c) are the fits to the Gaussian expression. (d)
Magnetic field dependencies of the peak intensity from the fits
at Q=(0, 0, 2), (1, 1, 2) and (1, 1, 1) with T = 1.5 K. . . . . 174

5.14 Elastic neutron scattering in the [H, K, 0] plane, taken at CNCS
at different temperatures (a) 1.5 K, (b) 1.9 K, (c) 2.0 K, and
(d) 2.5 K in zero fields. . . . . . . . . . . . . . . . . . . . . . 176

5.15 Elastic neutron scattering in the [H, K, 0] plane taken at CNCS
in different fields (a) 0 T, (b) 0.7 T, (c) 0.8 T, (d) 1.0 T, (e) 3.0
T, and (f) 4.0 T at base temperature around 1.5 K. . . . . . . 177

5.16 Magnetic field dependence of the measured intensity of the peak
(0.2, -0.2, 1) for T = 1.5 K. . . . . . . . . . . . . . . . . . . . 178

5.17 Elastic neutron scattering in the [H, K, 0] plane taken at CNCS
at different temperatures (a) 1.6 K, (b) 1.9 K, (c) 2.0 K, and
(d) 2.5 K in fields B = 4.75 T. . . . . . . . . . . . . . . . . . 179

5.18 Temperature dependence of the measured intensity of the peak
(0.2, -0.2, 1) in fields B = 0 T and B = 4.75 T. . . . . . . . . 180

5.19 Contour plots of the elastic neutron scattering intensity in the
[H, H, L] plane taken at DCS at temperature T = 0.1 K in
different magnetic fields (a) 0 T, (b) 0.75 T, (c) 1.25 T, (d) 1.6
T, (e) 2.3 T and (f) 4.0 T. The plots were integrated with all
the data in the central bank, and some contribution from the
[H, K, 0] plane is included. . . . . . . . . . . . . . . . . . . . 181

5.20 Contour plots of the propagation vector q1 = (∆qh,∆qh,∆ql)
as a function of magnetic field B at temperature T = 0.1
K. (a) Contour plot of the field dependent propagation vector
q = (h, h) with fixing l = 1. The two satellite peaks at
q = (0.2, 0.2, 1) and q = (−0.2,−0.2, 1) could be traced up to
the field B about 0.75 T. (b) Contour plot of the field dependent
propagation vector q = (h, h) with fixing l to the new peak
positions for fields above 0.75 T. (c) Contour plot of the field
dependent propagation vector q = l with fixing (h, h) at the
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5.21 Magnetic field dependencies of the scattering intensity at peak
positions Q=(0, 0, 2) and Q=(1, 1, 2) measured at temperature
T = 0.1 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.22 Measured magnetic field dependent dc magnetization at 0.1 K
(black solid line) and 1.5 K (red solid line) plot over the re-
scaled field dependent neutron scattering intensity of peak (002)
at T = 0.1 K (DCS, black solid circle) and T = 1.5 K (CNCS,
red solid triangle). . . . . . . . . . . . . . . . . . . . . . . . . 184

5.23 Inelastic neutron scattering measured at DCS at temperatrue
T = 0.1 K. (a)-(d) is the energy slice along the (0, 0, l) direction
with (hh) integrated over the range [1.4,1.6] in different fields
from 0 T to 1.6 T as indicated. . . . . . . . . . . . . . . . . . 187

5.24 Inelastic neutron scattering pattern measured at DCS at
temperatrue T = 0.1 K in zero fields. (a)-(d) is the energy
slice along the (h, h, 0) direction with l integrated over different
ranges as indicated. The extra intensity in the inelastic
scattering in (a) near hh = 1 and hh = 2 come from the tails of
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Chapter 1

Introduction

It is the quantum criticality of T = 0 phase transitions and related behaviors
that interest us in this thesis. In this chapter, we briefly introduce the role
of critical behavior in classical phase transitions, and also their extension to
quantum phase transitions. Heavy fermions, metal-insulator transitions and
low dimensional frustrated quantum magnets, which have received extensive
study as test systems for quantum phase transitions, are also discussed.

1.1 Classical Phase Transition

A phase transition is the change of a system between different states of matter,
and it is something that we encounter everyday in our life, such as changes of
liquid water to solid ice. Phase transitions and related phenomena are very
important in condensed matter physics, and great success has been achieved
in the last century in their description and classification [1, 2]. There is still
considerable interest in this field today.

1.1.1 First Order and Second Order Phase Transitions

Based on the behaviors of the thermodynamic free energy, Ehrenfest has
classified phase transitions into different classes through the derivatives of
the free energy with respect to different variables [1, 2]. First order phase
transitions are defined as having a discontinuity in the first derivative of
the free energy, and it is the second derivatives that exhibit discontinuous
changes in second order phase transitions. However, Ehrenfest did not
account for the situation where the second derivative of the free energy
diverges to infinity. A modern classification divides the phase transitions into
discontinuous transitions and continuous transitions. The discontinuous phase
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transitions are those that exhibit discontinuities in entropy S (fig. 1.1a), and
thus involve a finite latent heat during the transition. This is similar to the
Ehrenfest classification of first order phase transitions. In discontinuous phase
transitions, the second derivative of the free energy is not well defined at the
transition point Tc, and the experimentally measured specific heat, as the
temperature derivative of the entropy, shows a ’infinite’ sharp peak at Tc, as
shown in fig. 1.1c. The second order or higher order phase transitions with
continuous entropy are now defined as continuous transitions (fig. 1.1b), where
no latent heat accompanies the phase transition. As shown in fig. 1.1c, the
second derivative of the free energy could have a discontinuous jump or a
power law like divergence to infinity at Tc, depending on the nature of critical
fluctuations.

So far, we have considered transitions that happen at finite temperatures.
The main differences between discontinuous transitions and continuous
transitions is whether there is a latent heat or if there is an entropy change
involved during the transition. Based on the system free energy F [1, 2]

F = U − TS, (1.1)

these phase transitions are driven by the competition between the system
internal energy U and entropy S, and are tuned by the change of temperature.
A naive question could be asked: what will happen when the temperature T
goes to zero? Now everything is constrained by the third thermodynamic law
where the entropy change between different states is zero (∆S = 0). From
this point of view, the classification we just mentioned above for first order
discontinuous and second order continuous phase transitions will fail. Since the
entropy change will always be zero at zero temperature, in principle one cannot
distinguish these two kinds of phase transitions when T = 0. Experimentally,
the transition at exact zero can never be reached, and one can only approach
this point from finite temperatures. It turns out that the way a phase line is
suppressed to zero temperature is very different for first order discontinuous
transitions and for the second order continuous phase transitions. Based on
the Clausius-Clapeyron relation [1, 2]

dT

dP
=

∆V

∆S
or

dT

dB
= −∆M

∆S
, (1.2)

the volume change ∆V or magnetization change ∆M is always finite while ∆S
is restricted to zero as T = 0. Thus the slope of the phase boundary dT/dP or
dT/dB goes to infinity as a first order phase transition at Tc = 0 is approached,
and this appears as a vertical phase line [6], as shown in fig. 1.2a. This has
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Figure 1.1: Schematic behaviors of the entropy respect to temperature for first
order discontinuous transitions (a) and second order continuous transitions (b).
(c)The measured specific heat shows an infinite sharp peat at the first order
phase transition temperature Tc. (d) The specific heat could be discontinuous
or power law like divergent at a second order continuous phase transition at
Tc. [1, 2]
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Figure 1.2: Schematic phase diagram as a system was tuned to a first order (a)
or a second order (b) critical point at zero temperature based on the Clausius
- Clapeyron relation. The tuning parameter Γ could be chemical doping x,
pressure P or magnetic field B. [6]

been confirmed in real systems as in itinerant ferromagnetic critical points in
ZrZn2, and UGe2 [7, 8, 9], where a first order ferromagnetic critical point was
realized by tuning pressure. However, for a second order phase transition at
zero temperature this is not necessarily the case, and hence the phase line can
be suppressed to zero temperature in a power law (fig. 1.2b), as seen in the field
driven second order antiferromagnetic critical point in YbRh2Si2 [10]. More
interesting behaviors will be discussed later for phase transitions occurring at
zero temperature, the so-called quantum phase transitions.

1.1.2 Critical Scaling

The critical phenomena associated with continuous phase transitions turns
out to be very interesting. Peculiar properties are exhibited near the critical
point, and universal values of the power law exponents are found for different
systems [1, 2, 3, 4]. All of these are due to the scale invariant divergence of the
spatial correlation length near the critical point. We start from a non-analytic
thermodynamic free energy density f at the phase transition Tc, assuming it
has a homogeneous form such as

f(t, h) = b−dfF (tb
z, hbyh) (1.3)

near the critical point, where d is the system dimension, z and yh are the scaling
exponents associated with the two tuning parameters t and h [1, 2, 3, 4, 5].
Usually t is the reduced temperature t = (1 − Tc/T ), and thus z is referred
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to as the dynamical exponent. Here b is an arbitrary length resealing factor,
which could be renormalized as b = t−1/z or b = h−1/yh . Thus, we could rewrite
the scaling function of the free energy density as

f(t, h) = td/zfF (h/t
yh/z) = hd/yh f̃F (t/h

z/yh), (1.4)

We are going to show that all the other thermodynamic quantities can then
be expressed in a similar way based on this same free energy.

Specific Heat

The specific heat typically diverges at the critical point as

C ∼ t−α, (1.5)

where α is the corresponding critical exponent. Based on the definition, we
derive this directly from the free energy density f ,

C ∼ ∂2f(t, h)

∂t2
= td/z−2fc(h/t

yh/z), (1.6)

where fc is the new scaling function for the specific heat. From this, we see
that

α = 2− d/z. (1.7)

This clearly shows that the critical exponent α is only dependent on the spatial
and dynamic dimensionalities of the system.

Magnetization

Assuming this is a magnetic critical point with tuning parameter h, a similar
scaling form for the magnetization can be derived using the expression

m(t, h) ∼ ∂fF (t, h)

∂h
∼ t(d−yh)/zfm(h/t

yh/z). (1.8)

Here, we define another critical exponent β, where

m ∼ tβ = t(d−yh)/z, (1.9)

with
β = (d− yh)/z, (1.10)
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in the h→ 0 limit. We rewrite equation 1.8 as

m(t, h) ∼ h(d−yh)/yh f̃m(t/h
z/yh). (1.11)

Then in the t→ 0 limit, we have the field dependent magnetization as

m ∼ h1/δ = h(d−yh)/yh , (1.12)

with the critical exponent
δ = yh/(d− yh). (1.13)

Magnetic Susceptibility

Knowing the magnetization, we now calculate the ac magnetic susceptibility
as

χ(t, h) ∼ ∂m

∂h
∼ t(d−2yh)/zfχ(h/t

yh/z), (1.14)

and the critical exponent γ is defined here as

γ = (2yh − d)/z (1.15)

where χ ∼ t−γ in the h→ 0 limit.
Since all these thermal properties can be related to the derivatives of the

free energy, the critical exponents α, β, δ and γ obtained here can be related
to the scaling exponents d, z, and yh, which are a set of particular values for
the critical points for systems of the same universality class. As a result of
the above relations, we can find two general identities between these different
critical exponents:

α + 2β + γ = 2, (1.16)

and
δ − 1 = γ/β. (1.17)

These two relations are refereed as Rushbrook’s identity (1.16) and Widom’s
identity (1.17), and these relations themselves are not dependent on the system
dimension d [1, 2, 3, 4].

Correlation Length

Since the partition function Z is an extensive property, it scales with the
system volume V = Ld. As indicated in the schematic fig. 1.3 of a magnetic
system with blocked correlated spins on the length scale ξ, the number of these
blocks scales as (L/ξ)d, and thus lnZ ∼ (L/ξ)d [1, 2, 3, 4]. The singular part of
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Figure 1.3: A schematic view of blocks of spins. The spins (•) are correlated
with each other in the small box with length scale ξ in a system with volume
V = Ld. [5]

the free energy density f depends on the length scale according to [1, 2, 3, 4, 5]

f =
F

NkBTV
=
ln Z

Ld
∼ ξ−d. (1.18)

A characteristic property of a second order critical point is the divergence of
the correlation length ξt

ξt ∼ t−νt , (1.19)

at the critical point t = 0, where νt is another critical exponent. Any other
microscopic length scale like lattice parameter a is now not important near
the critical point, compared to the divergent correlation length ξ. Combining
equation 1.18 and 1.19, we find that the singular free energy density diverges
as

f ∼ tνtd. (1.20)

Comparing relation 1.20 with 1.4, we easily see that the new critical exponent
νt is just the inverse of the dynamic scaling exponent z (νt = 1/z). We can
also rewrite the relation 1.7 as

2− α = dνt. (1.21)
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This is Josephson’s identity, which is also known as the hyperscaling relation,
where the spatial dimension d is involved [1, 2, 3, 4]. The critical exponents for
systems with different dimensions are listed below in table 1.1. Rushbrook’s
identity 1.16 and Widom’s identity 1.17 are always valid with the exponents
for different system dimensions. However, the hyperscaling relation 1.21 is
only valid for d ≤ 4, which is referred to as the upper critical dimension.

Table 1.1: Critical exponents for systems with different universality classes. [1,
2, 3, 4, 5]

α β γ δ νt = 1/z

d = 2 Ising 0 1/8 7/4 15 1

d = 3 Ising 0.12 0.31 1.25 5 0.64

d = 3 XY 0 0.33 1.33 5 0.66

d = 3 Heisenberg -0.14 0.35 1.4 5 0.7

Mean Field 0 1/2 1 3 1/2

1.2 Quantum Phase Transition

Quantum phase transitions usually refer to continuous transitions happening
at T = 0 [11]. Different from the classical thermal phase transitions that occur
at nonzero temperatures that are due to thermal fluctuations, quantum phase
transitions are driven by quantum fluctuations with non-thermal external
tuning parameters such as pressure P , doping x, or magnetic field B.

1.2.1 Quantum Critical Scaling

We have shown that the divergence of the correlation length is responsible for
the singularity of the free energy density, and thus they lead to divergencies
of all the other thermodynamic quantities near a temperature driven classical
critical point [11]. Since quantum phase transitions occur at T = 0, quantum
fluctuations are the dominating factor here. A fundamental difference between
classical and quantum phase transitions is that not only the correlation length
in the spatial dimension d is divergent, but the correlations also extend to
infinity along the direction of the imaginary time τ = 1/kT as T → 0 [11].
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Since the imaginary time scales with the correlation length as

τ ∼ 1

T
∼ ξz, (1.22)

it is thus natural that the extra dynamical dimension z adds to the system,
and the singular part of the free energy for a quantum phase transition now
turns out to be

F (T,B) = b−(d+z)f(Tbz, hbyh). (1.23)

This function can be written in the scaling form as

F (T,B) = T
d+z
z fF (

h

T yh/z
) = h

d+z
yh f̃F (

T

hz/yh
). (1.24)

Following the same strategy that we followed for the classical phase transitions,
we can derive all the divergent thermal properties from the free energy. Thus,
the critical part of the specific heat scales as

C(T, h)

T
=
∂2F (T, h)

∂T 2
= T

d+z
z

−2fc(
h

T yh/z
), (1.25)

and we define the critical exponent α as

α = 2− (d+ z)/z. (1.26)

Similarly, the magnetization M(T, h) scales as

M(T, h) =
∂F (T, h)

∂h
= T

d+z
z

− yh
z fM(

h

T yh/z
) = h

d+z
yh

−1
f̃M(

T

hz/yh
), (1.27)

and the critical exponent β and δ is defined as

β = (d+ z − yh)/z, (1.28)

and
δ = yh/(d+ z − yh). (1.29)

The ac magnetic susceptibility

χ(T, h) =
∂M(T, h)

∂h
= T

d+z
z

−2
yh
z fM(

h

T yh/z
), (1.30)

and thus
γ = 2yh/z − (d+ z)/z. (1.31)
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We can also see by inspection that the two identities

α + 2β + γ = 2, (Rushbrooke′s Identity) (1.32)

and
δ − 1 = γ/β (Widom′s Identity) (1.33)

are still valid for quantum phase transitions.
By comparing the scaling functions of the specific heat, magnetization,

and magnetic susceptibility to those we obtained before for classical phase
transitions, we found that all the scaling forms are very similar, just with the
change of the spatial dimension d to the effective dimension d+ z for quantum
phase transitions. Accordingly, the hyperscaling relation for quantum phase
transitions is modified in the same way as

2− α = (d+ z)νt, (1.34)

where νt is defined as ξt ∼ T−νt ∼ T−1/z.

1.2.2 Phase Diagrams and the Quantum Critical Point
(QCP)

From the discussion above, we can see that a quantum phase transition in d
dimensions can be modeled as a d+z classical phase transition. The dynamical
exponent z here could be an integer, or a fractional number depending on the
nature of the system [11, 13, 24].

One consequence is that the upper and lower critical dimensions of the
system must be modified by z for quantum phase transitions [11, 13, 24]. For
example, for a one dimensional (1D) ferromagnetically coupled Ising spin Sz

chain, no magnetic order exists at any nonzero temperature. However, at
T = 0, this 1D Ising system can now mapped to a 2D Ising model where
z = 1, and it is magnetically ordered for B ≤ Bc [11]. In this case, long range
magnetic order exists as a phase line at T = 0, as marked in fig. 1.4a that
terminates at the QCP at Bc. On the other hand, the upper critical dimension
is much easier to reach near the QCP than for a classical phase transition.
For example, for a three dimensional (3D) Ising spin antiferromagnet, the
universality class associated with the field induced QCP should map onto that
of a four dimensional (4D) mean field model. This has indeed been observed in
the three dimensional local moment antiferromagnet MnCl2·4H2O [14], where
crossovers to four dimensional mean field behaviors were observed near the
QCP around B⊥

c ≃ 2.33 T, with the critical exponent β gradually increasing
from the 3D Ising value 0.3 to the mean field value 0.5 below ∼ 0.5 K. In this
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case, the critical fluctuations were cut off as expected for systems over the
upper critical dimension (d+ z ≥ 4).

For systems where the effective dimension is between the lower and upper
dimensional limits (1 < d + z < 4), a thermal phase transition is expected
at T > 0, h = 0 and a quantum phase transition at T = 0, h = hc. These
two transitions are then connected by a line of classical phase transitions
with Tc > 0 as indicated in fig. 1.4b [11, 13]. Although the quantum phase
transition is only present at T = 0, physical properties in a broad region of
nonzero temperatures are affected through the competition of the two different
kinds of critical fluctuations near the QCP. As T → 0, the correlation length
corresponding to the thermal fluctuations diverges as

ξT ∼ T−νt , (1.35)

while the correlation length related to quantum fluctuations diverges as

ξh ∼ h−νh . (1.36)

Here we introduced a critical exponent νh of the correlation length with
respect to the non-thermal tuning parameter h, which differs from the thermal
critical exponent νt as νh/νt = z/yh. When ξh > ξT , quantum fluctuations
are dominant, and the temperature ranges with T > hz/yh are referred to
as quantum critical regions. As marked by the red fan-shaped region in
fig. 1.4, this quantum critical region extends from the QCP at T = 0 to
much higher temperatures [11, 13, 24]. In the other limit, when ξT > ξh, the
thermal fluctuations become more important in temperature regions T < hz/yh .
Crossover behaviors were observed at T ∼ hz/yh that connect these two limits,
where these two fluctuations have comparable strengths. The fan shaped
critical region is determined by the critical exponents z/yh, which could be
linear when z/yh = 1, or depends in particular ways on the nature of different
QCPs [11, 13]. An alternative way to understand the microscopic picture of the
quantum criticality is explained by Subir Sachdev in [11, 13]. In the quantum
critical region, the thermal equilibration time τ ∝ 1/T is very short, and it
is actually the shortest time allowed by quantum mechanics for the system to
relax back to local thermal equilibrium [11, 13]. It was suggested that from
this point of view that the quantum critical region is an analogy to a nearly
perfect fluid [15].

The additional divergencies of the correlation lengths with imaginary
time in quantum phase transitions actually result from the vanishing of a
characteristic energy scale, and experimentally this results in E/T scalings
near the QCP, as observed in some quantum critical systems [16, 17]. Since
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Figure 1.4: A schematic view of phase diagram with a quantum critical
point for systems with different dimensions. (a) For the one dimensional
ferromagnetic coupling Ising spin chain, no magnetic order exists at non-zero
temperatures. However, the system is mapped to a 2D Ising model at T = 0,
which orders up to the critical field hc. (b) A higher dimensional system
magnetically ordered and this order can be gradually suppressed to a QCP at
hc. The fan-shaped region in both (a) and (b) indicates the quantum critical
region where quantum fluctuations are dominant. The red dashed line is the
crossover from the quantum critical region to the normal heavy fermion region,
where classical thermal fluctuations are dominating. [11, 13]

12



Table 1.2: Critical exponents of the temperature dependent specific heat,
magnetic susceptibility and resistivity predicted by several different theories
by Hertz-Millis [24, 25], Moriya et al. [26], and Lonzarich et al. [27] for the
itinerant ferromagnetic and antiferromagnetic quantum phase transitions in
different dimensions. [12]

Hertz/Millis [24, 25] AFM AFM FM FM

d = 3, z = 2 d = 2, z = 2 d = 3, z = 3 d = 2, z = 3

C/T γ − a
√
T −c log (T/T0) −c log (T/T0) T−1/3

∆χ T 3/2 χ0 − dT

∆ρ T 3/2 T T

Moriya et al. [26] AFM AFM FM FM

d = 3 d = 2 d = 3 d = 2

C/T γ − a
√
T −log T −log T T−1/3

χQ T−3/2 −(log T )/T T−4/3 −T−1/log T

∆ρ T 3/2 T T 5/3 T 4/3

Lonzarich et al. [27] AFM FM FM

d = 3, z = 2 d = 3, z = 3 d = 2, z = 3

C/T γ +
√
T − log T T−1/3

∆χ T−3/2 T−4/3 T−1

ρ T 3/2 T 5/3 T 4/3

the energy scale E is proportional to the tuning parameter h, scaling behaviors
of the thermal properties as functions of h/T yh/z are also found[18, 19, 20]. In
general, a ’naive’ scaling analysis near a QCP that assumes the existence of
hyperscaling is no longer appropriate, since the effective dimension at T = 0
is usually larger than 4 (deff = d + z > 4) [21, 22, 23]. Several different
theories have been proposed to explain the critical phenomena near magnetic
quantum critical points. One representive work is the Herz-Millis-Moriya
theory [24, 25, 26]. Millis has extended Hertz’s work on quantum phase
transitions assuming that all the systems considered are above the upper
critical dimension. He proposed that the dynamical exponent z = 2 for
itinerant antiferromagnetic quantum phase transitions and z = 3 for itinerant
ferromagnetic quantum phase transitions [25]. The exponents predicted by
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this theory that govern the temperature dependencies of different measured
quantities are listed in table 1.2. The critical exponents calculated with
some other self-consistent renormalization models by Moriya et al. [26] and
Lonzarich et al. [27] are also listed. We notice that the exponents for the
temperature dependent specific heat are basically the same for the three
models. However, the exponents for the temperature dependent resistivity
and susceptibility are different. Since hyperscaling has broken down, these
exponents no longer have the universal values predicted by the ’naive’ scaling
analysis, and instead reflect the importance of the dangerously irrelevant
variables above the critical dimension. More details of the quantum critical
scaling can be found in [22, 23].

1.3 Heavy Fermion

Heavy fermion compounds have attracted a lot of attention in the last
two decades as prototypical systems for studying quantum criticality and
unconventional superconductivity [28, 29]. The heavy fermions are usually
rare earth based intermetallic metals, where f electrons are located near the
border between the itinerant and localized states. Since the f electron level sits
very close to the Fermi energy, they are strongly hybridized with the band of
conduction electrons. A great advantage of heavy fermions is that the relevant
energy scales can be very small, and different ground states are experimentally
accessible through various tuning parameters [30, 32].

1.3.1 The Kondo Effect

Heavy fermion materials involve a lattice of rare-earth moments that are
strongly hybridized with the conduction electrons. They are usually referred
to as ”Kondo Lattice” compounds. There are many wonderful reviews such
as [30, 32], and references therein. Heavy fermion systems can be described
by the Hamiltonian [30, 32]

H =
∑
ij

tijc
+
iσcjσ +

∑
ij

IijSi · Sj + (1/2)
∑
i

JSi · si. (1.37)

The first term describes the conduction electron band with the hopping matrix
element tij and Iij implies the near neighbor exchange interactions between
local f moments. The last term determines the interaction between the spins
of the conduction electrons

si = c+i σci
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and the onsite localized moments Si through the Kondo coupling J . The
Kondo effect describes the screening of a localized magnetic ion by the spins
of the conduction electrons. This screening process is characterized by the
Kondo temperature [30, 32]

TK ∼ e−1/Jρ(EF ), (1.38)

where ρ(EF ) is the electron state density at the Fermi level EF . At high
temperatures T ≫ TK , the local moments are decoupled by the thermal
fluctuations, and behave like free magnetic ions, where Curie-Weiss behaviors
with χ ∝ 1/(T − θ) in magnetic susceptibility are observed [32]. With
decreasing temperature, the screening of the local moments by the conduction
electrons become significant. As the temperature T ≤ TK , the magnetic
moments starts to be ”quenched” in the conduction electron sea, and a
logarithmic correction of the resistivity ρ ∼ ln(T/TK) is observed [32]. It is
worth noticing that the new characteristic energy scale TK for heavy fermions
is only about 101 ∼ 102 K, and this is much smaller than the Fermi energy in
normal metals, which is usually around TF ≃ 103 ∼ 104 K [32].

1.3.2 The RKKY Interaction

For heavy fermion metals, the overlap of neighboring f electron wave functions
is small, and the direct dipolar interactions are usually weak. The dominant
interaction between the local moments is the indirect RKKY (Ruderman
and Kittel [33], and Kasuya [34] and Yosida [35]) exchange interaction,
mediated by the conduction electrons. The RKKY interaction was originally
proposed to explain the hyperfine coupling between the nuclear spin and the
conduction electrons in metals. In the RKKY model, the local moments are
correlated with each other through the polarization of the conduction electrons.
Considering a magnetic moment Si that sits at position r = ri, the spin si of
the conduction electron at r sees the local moment Si through the generated
effective field Heff ∼ JSi · δ(r). Thus the modulated conduction spin density
then acts on another local moment Sj at position r = rj through spin si. As
a result, the two spatially distinct local moments are correlated to each other
through the exchange interaction mediated by the conduction electron spin.
The total RKKY exchange interaction is given by

E =
18πn2

EF

J2Si · Sjf(2kF | rj − ri |), (1.39)
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where n = N/V is the average conduction electron density, EF is the Fermi
energy, and kF is the Fermi wave vector. Here

f(x) =
sinx− xcosx

x4

is a damped oscillating function whose sign alternates between positive (AF)
and negative (FM) as the separation of the magnetic ions is varied. In contrast
to the Kondo screening, the RKKY interaction tends to drive long range
magnetic order of the system.

1.3.3 The Doniach Phase Diagram

The competition between the Kondo effect and the RKKY exchange
interaction plays the central role in our understanding of the heavy fermion
materials. Doniach [36] has proposed a simplified phase diagram for a Kondo
lattice model in one dimension, as shown in fig. 1.5. Since the energy scale for
the RKKY interaction increases as a function of the coupling J as [30, 32, 36]

TRKKY ∝ J2ρ(EF ), (1.40)

it grows much faster than the exponential expression for the Kondo
temperature TK (equation 1.38) when J is small. On this weak coupling range
in the Doniach phase diagram, the RKKY exchange interaction is dominant,
and the magnetic ordering temperature TN increases in a similar way to TRKKY.
However, as the coupling J increases, the Kondo effect starts to be more
significant, and the magnetic moment is reduced by the Kondo screening. It is
thus expected that, after some point, the ordering temperature TN will start
to decrease and finally the magnetic order will be suppressed to TN = 0 at
the critical value J = Jc. In the strong coupling limit with large values of
J ≫ Jc, the Kondo effect dominates, and the ground state is a non ordered
paramagnetic state with quenched magnetic moments. The process of Kondo
screening can also be viewed as the melting of the local magnetic f electrons
into the conduction electron sea [10, 30, 32]. On the paramagnetic delocalized
side of the J = Jc QCP, the quenched moments contribute to the Fermi surface,
and the system evolves from a localized small Fermi surface in the magnetic
ordered state and a large fermi surface in the paramagnetic state where the
f electrons are delocalized. In this sense, the quantum phase transition in
heavy fermions is a Mott-like transition that corresponds to the localization -
delocalization of f electrons as proposed in [10, 30, 32, 43].
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Ce4+ (4f0)Ce3+ (4f1)

Yb3+ (4f13)

J(x,p,B...)Jc

Tn

FL

TRKKY ~ J2g(EF)

0

T TK ~ e-1/Jg(E
F
)

nFL

increase pressure

Yb2+ (4f14)

Figure 1.5: The Doniach phase diagram for heavy fermion compounds [10,
30, 36]. The blue line indicates the Kondo temperature TK, and the red line
indicates the RKKY temperature TRKKY. The heavy Fermi liquid region was
restored in the strong coupling limit as marked by the orange line. In the
weak coupling range in the Doniach phase diagram, the RKKY exchange is
the dominant interaction, and the magnetic ordering temperature TN increases
in the similar way as TRKKY. However, with increased coupling J , the Kondo
effect starts to be more significant, and the magnetic moment is increasingly
screened by the Kondo effect. Thus a QCP is expected at some critical value
J = Jc where TN = 0. non-Fermi liquid behaviors are usually observed in the
critical region. With increasing pressure, the magnetic moments of Ce ions
and Yb ions are driven in opposite directions due to their different 4f electron
configurations.
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The Heavy Fermi Liquid Regime

As shown in fig. 1.5, there are two regimes around the T = 0, J = Jc QCP
besides the magnetic order. The strong coupling state with large Fermi surface
can still be described by the Fermi liquid theory, but with a ’heavily’ dressed
mass [32, 40]. It was proposed by Landau that the excitation spectrum in
a strong interacting Fermi system develops continuously from single-particle
excitations in a noninteracting system as the interaction increases in strength.
Such excitations are called quasiparticles, and they are enhanced by their
correlations with other particles. When measuring a single electron property
in an interacting system, which is a collection of many electrons, the bare
electron mass m is renormalized to an effective mass m∗ [32, 40]. In the
Landau Fermi liquid theory, the properties of such a Fermi liquid are related
to the quasiparticle state density g(EF ) = m∗kF/π

2~2 near the Fermi level
EF [32, 40]. It was shown that the linear Sommerfeld coefficient γ of the
electronic specific heat behaves as

C/T ∼ γ, (1.41)

where

γ =
π2k2Bg(EF )

3
=
k2Bm

∗kF
3~2

∝ m∗

is a direct measurement of the effective mass m∗. In normal metals such as
copper or aluminum, the value of γ is of the order ∼ 1 − 10mJ/mol · K2.
For heavy fermion systems, the effective masses of the electrons are greatly
renormalized due to strong correlations, and γ has been found to be as large
as 1600mJ/mol ·K2 in the rare earth compound CeAl3 [37]. This is about 1000
times more than conventional metals, and this is also where the name ’heavy
fermion’ comes from [32, 40].

The magnetic susceptibility for an interacting system is also enhanced in
a similar way with [32, 40]

χ = µ2
Bg(EF )

1

1 + F a
0

=
µ2
BkFm

∗

π2~2
1

1 + F a
0

, (1.42)

where F a
0 is the s wave (l = 0) dimensionless Landau parameters. It was found

by Wilson that the dimensionless ratio

RW =
π2µ2

B

µ2
B

χ

γ
= 2, (1.43)

is equal to the theoretical value expected from the impurity Kondo model [32,
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38, 39].
In the Landau Fermi liquid, the electron-electron scattering near the Fermi

energy gives a quadratic temperature dependence of the resistivity ρ

ρ = ρ0 + AT 2, (1.44)

where the coefficient A is related to the effective mass as A ∝ (m∗)2. It was
observed by Kadowaki and Woods [41] that the ratio between the coefficient
A and the square of the Sommerfeld ratio γ

A

γ2
= 10µΩ− cm ·mol2K2/J2 (1.45)

does not depend on the quasiparticle mass, but it is a universal constant for
many heavy fermions. The Wilson ratio RW (equation 1.43) and Kadowaki-
Woods ratio A/γ2 (equation 1.45) are usually used to classify different heavy
fermion materials [32].

non-Fermi Liquid Behavior

Although Fermi liquid theory is still adequate for the description of the
physical properties as T → 0 in the Kondo quenched moment state with
strong interaction J ≫ Jc, it fails in the region near the quantum phase
transition. Instead, some spectacular phenomena called ”non-Fermi liquid”
(nFL) behavior develop in the vicinity of the QCP (J = Jc) [21, 32, 40].
Although the quantum phase transition is only defined at the temperature
T = 0, this nFL behavior extends over a wide temperature region for T > 0,
as indicated in fig. 1.5. Such behaviors have been explored in a number of
bulk d and f electron systems with logarithmic or power-law like divergencies
in their temperature dependent specific heat and magnetic susceptibility as

C/T ∼ −log T, or T−α (1.46)

χ ∼ T−γ (1.47)

in the nFL region. These behaviors are distinct from the Fermi liquid behavior
we discussed above where C/T and χ approach constant values as temperature
goes to zero. In addition, the resistivity is often found to have unconventional
temperature dependencies such as

ρ ∼ ρ0 + AT n, n ≃ 1− 1.5 (1.48)
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Figure 1.6: A schematic view of two types of phase diagrams for heavy fermions
near the antiferromagnetic QCP at J = Jc. (a) is the spin-density-wave QCP
where the magnetic moments are already quenched above the quantum phase
transition. (b) is the Kondo-breakdown type of QCP, where the local moments
still survives until T → 0, and a new energy scale T ∗ that relates to the Kondo
screening develops just at the QCP. The gray line indicates the temperature
scale, above which the local moments are incoherent and behave as free Curie
moments. The dashed line T ∗ represents the energy scale below which the
local f moments are fully delocalized into a large Fermi surface, and the line
TFL indicates the crossover to the low temperature Fermi liquid region. [10, 30]

with powers n different from 2 in many heavy fermion systems at the boundary
of the magnetic instability [32]. The breakdown of the Fermi liquid theory
indicates that there are very strong electron-electron interactions near the
QCP, and that quantum critical fluctuations are at the heart of this problem.
Since in practice all physical properties can only be measured at T > 0,
the identification of the nature of the quantum criticality at T = 0 relies
on the scaling behaviors found at finite temperatures. Theoretical scaling
analyses near the QCP have been developed for a long time, as discussed
in the previous section. However, analyses that are consistent with basic
thermodynamical principles like the Maxwell relations of the measured thermal
properties such as specific heat and magnetic susceptibility have only been
realized experimentally in a few systems [17, 18, 20].

1.3.4 Quantum Criticality in Heavy Fermions

A lot of experimental and theoretical studies of heavy fermions have taken
place since their first discovery in 1970s [37, 42]. However, a universal
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description of the unusual behaviors in different heavy fermion materials is
still lacking. It is generally believed that the quantum critical fluctuations are
responsible for the breakdown of the standard Landau Fermi liquid theory of
normal metals. Two models of quantum criticality in heavy fermions have been
proposed. One is the itinerant spin-density wave (SDW) QCP first studied by
Hertz and Millis [24, 25], and the other is the so called Kondo-breakdown QCP
introduced by Qimiao Si [43] et al., and P. Coleman et al. [44]. Shown in fig. 1.6
is the schematic view of the two quantum critical phase diagrams in heavy
fermions near the antiferromagnetic QCP [10, 30]. The gray lines indicate the
temperature scales, above which the local moments are incoherent and behave
as free Curie moments. Fig. 1.6a represents the spin-density-wave QCP, and
fig. 1.6b is the Kondo-breakdown type QCP. The dashed line T ∗ represents the
energy scale below which the local f moments are fully delocalized into a large
Fermi surface, and the line TFL indicates the crossover to the low temperature
Fermi liquid region. The main difference of these two scenarios is whether the
local moments survive or not in the vicinity of the T = 0 QCP.

For the SDW type QCP, the energy scale T ∗ intercepts the magnetic order
boundary at TN > 0, and the f moments are fully quenched before the QCP
is reached. The ordered state near the quantum phase transition is thus an
itinerant SDW state. This kind of quantum criticality falls into the category of
Hertz-Millis theory of the itinerant antiferromagnetic QCP with z = 2 [24, 25].
However, if the Kondo screening breaks down just at the boundary of the
magnetic order, the quenched f electrons only exist in the paramagnetic
state, and the strongly correlated local moments persist down to the lowest
temperatures as T → 0. In this case, the QCP separates an ordered state with
local magnetic moments and a small Fermi surface from a quenched moment
paramagnetic state with a large Fermi surface [10, 30, 32, 43]. At this ’local’
QCP, the 4f electrons are involved in the T = 0 localization-delocalization
transition, and additional critical fluctuations are expected besides the order
parameter fluctuation of the magnetic phase transition itself. A new energy
scale T ∗ was introduced for this Kondo-breakdown QCP, which indicates the
crossover from the small Fermi surface to the large Fermi surface regime at
finite temperatures [10, 30, 32, 43].

Studies of quantum criticality in heavy fermions are mainly performed
in the 5f Uranium (U) and 4f Cerium (Ce) and Ytterbium (Yb)based
systems [45]. It was noted that the trivalent configuration Yb3+ (4f 13) can be
considered as a hole counter part of the Ce3+ (4f 1) configuration [6]. However,
we have to mention that the magnetic trivalent stable Ce3+ is the stable
configuration at low pressures (large volumes), while for Yb non-magnetic
Yb2+ is the more stable configuration at low pressure. This difference makes
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Figure 1.7: (a) Schematic phase diagram of CeCu2Si2 in a narrow homogeneity
range with different compositions close to 1:2:2. Different states are observed
from the antiferromagnetic order (A type) to the superconducting state (S
type). (b) Scaling plot of the dynamical susceptibility as a function of energy
and temperature on CeCu2Si2 S-type single crystals. [30]

opposite trends in Ce and Yb based systems when the tuning parameter is
pressure, as indicated in fig. 1.5. Here we briefly introduce a few well studied Ce
and Yb based compounds (CeCu2Si2 [42], CeCu6−xAux [17], YbRh2Si2 [10]) as
examples of the different types of quantum criticality found in heavy fermions.

CeCu2Si2 is the first discovered heavy fermion compounds that shows bulk
superconductivity near the AF-QCP [30, 42]. It crystallizes in the famous
ThCr2Si2 structure [42]. The physical properties of CeCu2Si2 are very sensitive
to the sample stoichiometry, and the crystals can vary from antiferromagnetic
order (A type) to superconductivity (S type) in a very narrow composition
range [30, 42]. The schematic phase diagram is shown in fig. 1.7a [30]. Inelastic
neutron scattering experiments were performed on CeCu2Si2 S-type single
crystals, and a scaling of the dynamical susceptibility χ′′(Q,ω) was observed
following

χ′′(Q,ω) = T−3/2f [~ω/(kBT )3/2], (1.49)

as seen in fig. 1.7b. This scaling, together with the temperature dependent
line width Γ(T ) = Γ0 + aT 3/2, is argued to be evidence that CeCu2Si2 is close
to an itinerant 3D SDW QCP [30].

CeCu6 is another well established heavy fermion compound where the
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Figure 1.8: (a) Temperature (T ) - doping (x) phase diagram of the system
CeCu6−xAux with an AF-QCP at the critical composition x = 0.1. (b) Scaling
of the dynamical magnetic susceptibility as a function of E/T at various q
vectors. [17]

antiferromagnetic order can be suppressed by doping with gold (Au) [17].
Fig. 1.8a shows the temperature doping (T − x) phase diagram of the system
CeCu6−xAux with an AF-QCP at the critical composition x = 0.1 [17].
Heavy fermion behaviors were observed above the critical concentration. One
question asked here is whether there are any local moments surviving at the
critical point. Single crystal neutron scattering experiments were performed on
the critical compound CeCu5.9Au0.1, and scaling of the dynamic susceptibility
was observed as a function of E/T as [17]

χ′′(Q,ω) = T−3/4f(E/T ). (1.50)

This universal scaling was not just found for q = 0, but at different q positions
along a line in the Brillouin zone [17]. The E/T scaling was introduced with
the assumption of Curie-Weiss like behaviors of free local spins near the critical
point [17]. This argues that the Kondo breakdown local moment QCP is more
appropriate for the case of CeCu6−xAux [17].

YbRh2Si2 is isostructural to CeCu2Si2, with the same tetragonal ThCr2Si2
crystalline structure [10]. Antiferromagnetic order has been found in this
material at TN ∼ 70 mK in zero field. This magnetic order can be driven
to an AF-QCP at Bc ∼ 0.66 T with field along the crystal c axis [10]. Similar
to other quantum critical heavy fermion systems, Fermi liquid behavior was
found in high fields at low temperatures, with an enhanced value of γ. nFL
behaviors, such as a linear temperature dependent resistivity (ρ ∼ T ) were
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Figure 1.9: (a) Field temperature phase diagram of YbRh2Si2 with field
along the c axis. The red points are the new energy scale determined from
the Hall effect resistivity measurements, which signifies the crossover from the
small Fermi surface to the large Fermi surface. (b) The field derivative of the
crossover function γ(b) becomes very large as T → 0. [10, 31, 122, 152, 156]

observed near the critical point.
A crossover temperature scale is defined from the full width at half

maximum (FWHM) of the magnetoresistivity which vanishes as T → 0 at the
field tuned AF-QCP, as shown in fig. 1.9. This crossover line was initially found
in Hall effect measurements [31], and has also been found in measurements
of magnetostriction, magnetization, and ac magnetic susceptibility[156]. It
was proposed to account for the jump in the Fermi surface volume at finite
temperatures [10, 31, 122, 152, 156], and it corresponds to the Kondo
breakdown line in fig. 1.6b. It was shown in [10, 122, 152, 156] that
all these energy scales merge to the same QCP at T → 0., The multiple
vanishing energy scales indicate that the quantum criticality in YbRh2Si2 can
be categorized as a Kondo breakdown QCP. Based on the Maxwell relation
dM/dT = dS/dH, additional signatures of this T ∗ line are confirmed from
inflection points observed in dM/dT . It has also been argued that the crossover
temperature T ∗ may relate to Zeeman physics of Yb ions in YbRh2Si2 [160],
and further study of the origin of this T ∗ is still needed.

1.4 Metal Insulator Transition (MIT)

The metal-insulator transition (MIT) is the transition from a metallic phase to
an insulator phase, and it is one of the most fundamental subjects in condensed
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matter physics [46, 47]. The MIT can be characterized into different classes
based on the nature of the interactions [46]. Many MITs are due to the
electron-ion interaction, which can be understood on the basis of the single
electron theory. Examples are transitions in band insulators, Peierls insulators,
and Anderson insulators [46]. Different from all these, Mott insulators are
induced by the interactions among electrons, and they are understood as a
collective electron phenomena [46]. We give a brief introduction of the Mott
MIT below.

From the point of view of quantum criticality, the Mott MIT is an exact
example of a quantum phase transition. In the Mott-Hubbard picture, the
electronic system is described by the Hubbard Hamiltonian [46]

HHUB = −
∑
ij

(tc+iσcjσ + h.c.) +
∑
j

ϵjc
+
jσcjσ + U

∑
j

c+j↑cj↑c
+
j↓cj↓. (1.51)

Here ϵ in the second term is the site energy, t is the hopping element that is
proportional to the kinetic energy, and U represents the Coulomb repulsion
between electrons. For the limit with t ≫ U , the the kinetic energy is
strong enough to overcome the Coulomb potential U , and the electrons can
spread over the entire crystal, resulting an itinerant metallic ground state.
However, on the other hand with t ≪ U , the kinetic energy is too weak for
the electrons to hop to different sites, and the electrons prefer to localize
themselves in order to minimize the potential energy U [46]. A charge gap
opens in this Mott insulating state, and the electrons at each site behave
as localized magnetic moments. The Mott MIT is the consequence of the
competition between the electron kinetic energy t and Coulomb repulsion U .
In some sense, we can also understand the itinerant metallic state and the
localized insulating state as two different ground states where the electrons
are localized in momentum space and real space, respectively. The Mott MIT
that separates them at T = 0 is a true quantum phase transition that can be
tuned by external parameters such as chemical doping, or pressure that change
the coupling strength. A schematic view of the MIT phase diagram is shown in
fig. 1.10 [47]. The T ∗ line indicates the quantum critical crossover from metallic
state to insulator, where the slope of the temperature dependent resistivity
changes [47]. From the point of view of a localization-delocalization transition,
the Mott MIT-QCP has a lot in common with the localized AF-QCP in the
heavy fermions. The primary difference is that only f electrons are considered
in the delocalization process induced by the hybridization interaction to the
conduction electrons [10, 30, 32, 43], and the material is metallic on both sides
of the heavy fermion localized AF-QCP, while in the case of the Mott MIT-
QCP, the conduction electrons themselves are localized due to the Coulomb
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Figure 1.10: (a) Sketch of the temperature dependent resistivity close to a MIT
QCP. The T ∗ line indicates the quantum critical region. As the system crosses
over from metallic state to insulator, the slope of the temperature dependent
resistivity changes. (b)Schematic view of a general Metal-Insulator transition
phase diagram with tuning parameter g. [47]

interactions [46, 47].
It has to be emphasized here that, although localized magnetic moments

develop at the MIT-QCP, it is not necessary for these pre-formed local
moments to be magnetically ordered, and no breaking of the lattice symmetry
or periodicity is required for the Mott insulating phase. However, in realistic
situations, the exchange interaction between localized spins usually leads to
long range magnetic order at low temperatures in the insulating state. The
layered organic charge-transfer salts κ-(BEDT-TTF)2X have been well studied
as excellent examples of Mott MITs [48, 49, 50]. The temperature pressure
(T − P ) phase diagram has been established by the studies of κ-(BEDT-
TTF)2X series under pressure or with different kinds of monovalent anions
X, as shown in fig. 1.11a [48, 49]. Bulk superconductivity was observed near
the MIT QCP, and it was separated from the antiferromagnetic insulating state
by a first order MIT phase line, which ends at the critical end point Tc ≃ 39.7
K, and Pc ≃ 25.8 MPa [48, 49]. As expected in other quantum critical systems,
universal critical behaviors are observed near the MIT-QCPs. Regardless of
the microscopic details, scaling analyses based on simple and fundamental
physical concepts are always powerful techniques for understanding the nature
of the criticality. Critical scaling of the conductivity and thermal expansion
observed near the MIT critical end point has indicated that this system belongs
to the two dimensional (2D) Ising universality class. The singular part of the
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Figure 1.11: (a) Simplified temperature pressure (T − P ) phase diagram
of the κ-(BEDT-TTF)2X family. The thick solid line is the first order
phase transition from the Mott insulator to the high pressure metallic or
superconductor phases. The phase line terminates at the critical end point
(•) at Tc ≃ 39.7 K, and Pc ≃ 25.8 Mpa. (b) Logarithmic plot of spin lattice
relaxation rate divided by T (1/T1T ) and conductance measured at the critical
end point against | P − Pc |. The dashed black line indicates the pressure
dependence of | P − Pc |1/2 [49, 51].

free energy based on the measured thermal properties was proposed by [50]

f(t, h) =
1

8π
t2logt2 + |h|d/yhΦ(t/|h|z/yh). (1.52)

Here t = [T−Tc−ζ(P−Pc)]/T0, and h = [P−Pc−λ(T−Tc)]/P0 are normalized
scaling variables with small linear mixing terms (details explained in [50]). It is
interesting to notice that although the MIT itself is a quantum phase transition
that separates the localized insulating state and the itinerant metallic state, the
scaling analysis performed here for κ-(BEDT-TTF)2Cu[N(CN)2]Br is actually
classical since the critical end point occurs at Tc ̸= 0, just like the critical end
point of the liquid gas transition of water.

Many of the studies of the MIT are based on measurements of the
charge and lattice degrees of freedom [49], and very little is known about
the dynamics of the spins near the MIT. Since the lattice of localized
moments melts into a delocalized electron fluid near the Mott MIT, changes
of the magnetic properties are also expected, even if no magnetic order is
involved [51]. Formation of localized spins may cause divergencies of the
magnetic susceptibilities near the critical point [51]. It is thus intriguing to see
that the spin lattice relaxation rate divided by T (1/T1T ) measured by NMR
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follows the same power law as the conductivity near the critical end point
against | P − Pc | in κ-(BEDT-TTF)2X (fig. 1.11b) [51]. This suggests that
the spins also display strong critical fluctuations at the Mott MIT. However,
since many of these systems are tuned by pressure, comprehensive studies of
the evolution of the magnetization in these kinds of QCPs are still lacking due
to technical issues.

1.5 Low Dimension and Frustration

Quantum fluctuations are often observed in systems on the verge of the
magnetic ordering, and they are thought to be responsible for the non Fermi
liquid critical behaviors. In low dimension and frustrated systems, quantum
fluctuations are also enhanced and quantum critical behaviors are expected.

1.5.1 1D Quantum Magnet, Luttinger Liquids

Landau’s Fermi liquid theory has proven to be very successful for describing
high dimensional systems with interacting electrons. Quasiparticle excitations
are still well defined as interactions are switched on, leading to renormalized
quasiparticles similar to the free electrons in the noninteracting Fermi gas.
However, this description fails in one dimensional systems. A straightforward
way to understand this is from the interactions, as described in [52, 53]. In
higher dimensions, electrons can move in all directions, and the quasiparticles
can still be viewed as individual particles. But for one dimensional systems,
there is only one direction for the electrons to go, and no individual electrons
can move without interacting with other electrons [52, 53]. Thus only
collective electronic excitations are possible [52, 53]. This makes the one
dimensional systems dramatically different from interacting electron systems in
high dimensions. The analogy to the Fermi liquid found in higher dimensional
systems is the Lutinger liquid in one dimensional systems and a good review
can be found in [52] and references therein.

One main property of the one dimensional Luttinger liquid is fractional
excitations [52]. Since excitations can only be collective, different quantum
numbers like charge or spin can exist as two separate excitations, and
the electrons are broken into two elementary excitations that carry spin
(Spinon) and charge (Holon), respectively [52, 53]. Spinon excitations have
been observed in one dimensional antiferromagnetic spin (S = 1/2) chain
systems [54, 55]. In this spin S = 1/2 chain, the single spin flip state
correspond to an S = 1 excitation. This is similar to a one magnon excitation
found in higher dimensional magnets. However, in one dimension, this S = 1
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magnon is decomposed into two domain wall excitations that each carrying
spin S = 1/2 [52, 53, 54, 55]. As indicated in the sketch in fig. 1.12a by the
red dashed lines, these two domain walls can then separately propagate along
the chain [52, 53]. These excitations, known as spinons, are the new basic
excitations. This could also be viewed as a deconfinement of a S = 1 magnon
to two S = 1/2 spinons using the language of Quantum-Chromodynamics
(QCD). Since spinons are always created in pairs by flipping one spin, except
at the end of the chain, the excitation spectrum is defined by a continuum
that consists of two spinons as observed in [54, 55]

q = q1 + q2 (1.53)

E =
πJ

2
[sin(q1) + sin(q2)]. (1.54)

Here J is the nearest neighbor interaction along the chain. Because each spinon
propagates over two lattice spacings 2a at one time (fig. 1.12a (ii-iii-iv)), the
momenta q1 and q2 vary only in the range of the half Brillouin zone [0, π/a],
and the total momentum q is the sum of the two 1.53 [52, 53]. The excitation
spectrum for the spin half (S = 1/2) Heisenberg chain is shown in fig. 1.12b.
The colored contour indicates different spectral weight, which alters depending
on the types of interactions. For the change from isotropic Heisenberg model
to the XY anisotropic planar model, the spectrum weight will shift from low
to higher energies, and for the Ising limit, the point at q = π will become
gapped [56, 57].

Another crucial property of the Luttinger liquid is the power law
dependence of the correlation function [52, 53]. This is familiar to us, as we
have seen such behavior in high dimensional systems near the critical point.
As was discussed in earlier sections, when the system is tuned close to a QCP,
and the quantum fluctuations are strong enough to break up the quasiparticles,
non-Fermi liquid behaviors were observed in the critical region that could
be described by critical scaling with universal power exponents [10]. The
power law behaviors in one dimensional Luttinger liquids can be understood
in a similar way. Since no long range order is allowed in one dimensional
systems for any finite temperature, it could be alternatively viewed that one
dimensional systems are always located at the verge of static order [52, 53].
Thus, they always behave in a critical way, just like the systems that are
tuned close to a QCP. The key point is that, in both cases, the quantum
fluctuations are so strong as to preclude the quasiparticle scenario, and the
Fermi liquid theory always breaks down. However, different from the universal
exponents found near the QCP in higher dimensional systems, the power laws
in a one dimensional Luttinger liquid are characterized by the two Luttinger
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Figure 1.12: (a) Sketch of the spinon excitation in a one dimensional
antiferromagnetically coupled spin chain system. (i) The spin S = 1 magnon
with a single flipped spin is decomposed into two domain wall excitations
(Spinon) with each carrying spin S = 1/2 (red dashed lines). The two spinon
excitations can propagate along the chain separately with a shift by two lattice
spacings at a given time (ii-iii-iv). (b) Energy spectrum of the two spinon
excitation for the Heisenberg spin half chain. The color contour indicates the
scattering spectrum weight which depends on different models. [52, 53, 54, 55]

30



liquid parameters: the velocity of density excitation µ and the dimensionless
parameter K. A detailed description of these parameters can be found in the
book of T. Giamarchi [52]. Experimentally, these power law like behaviors
can be tested by the temperature and frequency dependent conductivity in
real materials [52, 58]. A linear temperature dependence of the resistivity
has been observed in the one dimensional organic conductors (TMTSF)2PF6,
which was argued to be consistent with the Luttinger liquid behavior, where
ρ(T ) ∼ T 4n2Kρ−3 with n = 2, Kρ = 0.23 ∼ 0.25 [52, 58].

1.5.2 2D Shastry-Sutherland Lattice (SSL)

Exotic excitations are not only limited to one dimensional spin systems.
Frustrated spin systems in higher dimensions have attracted a lot of interest
over these years also, and fractionalized excitations have been recently
observed in the two dimensional spin half S = 1/2 Kagome lattice
antiferromagnet ZnCu3(OD)6Cl2 (Herbertsmithite) through inelastic neutron
scattering experiments [59]. Consider three Ising spins residing on the corners
of a triangle, with antiferromagnetic interactions between nearest neighbors,
as shown in fig. 1.13a(i), there is no way to make every pair of spins
anti-parallel to each other, and the third spin is always frustrated since it
cannot simultaneously satisfy the AF interaction with the other two spins.
The ground state of this lattice thus consists of many energy degenerate
states. The situation becomes slightly different for a square lattice, as shown
in fig. 1.13a(ii). The ground state of a square lattice is a classical Neel
ordered magnet. If we only consider the nearest neighbor antiferromagnetic
interactions, all four spins can be satisfied without inducing any frustration.
However, if the next near neighbor interaction is included and if it also happens
to be antiferromagnetic, then the spins located along the diagonal direction
become frustrated too, as indicated in fig. 1.13a(iii). Different from the
geometrical frustration in the triangular lattices, the square lattice itself is
not frustrated, and the frustration is induced by the competion of the nearest
and next nearest neighbor interactions.

A well known two dimensional frustrated spin model based on the square
lattice is the Shastry-Sutherland Lattice (SSL), proposed by Shastry and
Sutherland in 1981 [60]. In the SSL, the spins on the square lattice interact
through the antiferromagnetic nearest neighbor interaction J ′ and next near
neighbor interaction J along the diagonal direction, as indicated by the dashed
and the solid lines in fig. 1.13b. In the limit with J/J ′ = 0, the SSL is a
traditional antiferromagnet with classical spin wave excitations. However, in
the other limit with J ′/J = 0, Shastry and Sutherland have shown that the
quantum spin liquid with singlet dimers is an exact ground state [60]. A
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Figure 1.13: (a) The two dimensional triangular and square lattices with Ising
spins (red arrows) on the corners. (i) The triangular lattice is geometrically
frustrated with the nearest neighbor antiferromagnetic interactions. (ii) The
square lattice is not frustrated, considering only the antiferromagnetic nearest
neighbor interactions. However, when the antiferromagnetic next nearest
neighbor interactions are included (iii), the square lattice becomes frustrated
by the competition between these two interactions. (b) Sketch of the original
Shastry-Sutherland model. J ′ and J represent the nearest and next nearest
neighbor antiferromagnetic interactions [60].
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QCP was expected near J ′/J = 0.68 [62]. A plaquette-like singlet state is
also proposed to exist near this QCP [61, 62]. Experimentally, it is very hard
to make a real compound that represents the SSL model, however, recently
it was found that there are a few systems where the magnetic ions form an
orthogonal dimer lattice which is topologically equivalent to the SSL, as shown
in fig. 1.14a [61]. This lattice can be viewed as orthogonal aligned dimers,
with antiferromagnetic intra-dimer interaction J and inter-dimer interaction
J ′. The compound SrCu2(BO3)2, with Heisenberg like spin S = 1/2 Cu ions
forming in orthogonal dimers, is well described by this model [61]. It is believed
to have a singlet spin liquid state and no magnetic order in zero field. An
excellent review of this compound can be found in [61] and references there
in. A few unique features are found in this material due to the special nature
of the ground state of the SSL.

Some of these features reflect the uniqueness of the quantum spin liquid
state. One main character is the unusual gapped excitations [63]. As shown
in fig. 1.14a, the ground state is a spin singlet that results from dimers [63]

| s⟩ = |↑↓⟩− |↓↑⟩√
2

(1.55)

with the total spin S = 0, and there are three excited triplet states

| t1⟩ =|↑↑⟩, | t0⟩ =
|↑↓⟩+ |↓↑⟩√

2
, and | t−1⟩ =|↓↓⟩ (1.56)

with the total spin S = 1. The total spin change from the singlet ground state
to the excited triplet states is ∆S = 1, and in this view, this excitation is
still a magnon excitation (S = 1) [65], which is fundamentally different from
the spinon excitation (S = 1/2) we have discussed earlier in one dimensional
spin chains. However, this S = 1 magnon excitation also differs significantly
from a classical spin wave excitation in traditional magnets. Importantly,
this gapped excitation can be realized in the spin liquid ground state without
necessarily breaking the translational symmetry [61], while the traditional spin
wave excitations can only be found in the magnetic ordered state, and are
usually gapless in the absence of anisotropy. Another peculiar feature is the
dome order induced by magnetic fields. As the applied magnetic field increases,
the degeneracy of the three excited triplet states will be lifted because of the
Zeeman interaction −gµBS [63]. The state energy of | t1⟩ with Sz = 1 will
be lowered in fields and suppressed to zero at the critical fields Bc1 and Bc2.
The gap size is determined by the intra-dimer interaction with ∆ ∼ J , which
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Figure 1.14: (a) A 2D structure with orthogonal dimers, which is topologically
equivalent to the original Shastry-Sutherland Lattice (SSL). The solid and
dashed lines represent the antiferromagnetic intra-dimer and inter-dimer
exchange interaction J and J ′. (b) Sketch of the singlet-triplet excitation
of the dimers in magnetic fields. The triplet states are separated from the
singlet ground state by an excitation gap ∆ in zero fields. A Bose-Einstein-
Condensation (BEC) state with condensed triplet was induced between the
lower and upper critical fields Bc1 and Bc2 [63].

is proportional to the critical fields approximately as

J ∼ (Bc1 +Bc2)/2, (1.57)

as shown in fig. 1.14b [63]. The colored region with band width d is the
dispersion of the excited states which is usually related to the inter-dimer
interaction J ′, and defines the lower and upper critical field where [63]

J ′ ∼ (Bc2 −Bc1)/2. (1.58)

This domed region phase between Bc1 and Bc2 could also be viewed as a phase
with gradually condensed magnons with bosonic character where S = 1, and
the two quantum phase transitions at Bc1 and Bc2 fall into the Bose-Einstein
condensation (BEC) universality class [63].

The gapped excitations and the field induced dome phase are found in
other quantum dimer systems too. However, there is another feature of
these gapped excitations which is mainly induced by the particular SSL
geometry. Since the dimers are orthogonally aligned to each other in the
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SSL, the hopping of the triplet between dimers is greatly suppressed, and
the triplet excitation is almost localized. This gives an flat dispersion in
inelastic neutron scattering experiments [61]. This has been confirmed in the
material SrCu2(BO3)2, where a small dispersion in the plane was believed to be
induced by the Dzyaloshinsky-Moriya (DM) interactions [64]. A remarkable
feature due to the locked triplets is the magnetization plateaux in the field
dependent magnetization. As the external applied field increases, the density
of the triplets changes, and magnetization plateaux exist at certain ratios
such as m = 1/8, 1/4, 1/3 [61]. It is this localized character that make the
SSL significantly different from other dimer systems and allows for the study
of many interesting quantum behaviors.

Besides SrCu2(BO3)2, the orthogonal aligned dimer SSL is also realized in
the rare earth systems TmB4 [68] and Yb2Pt2Pb [66, 67]. However, different
from the Heisenberg like S = 1/2 spins in SrCu2(BO3)2, the magnetic moments
in the rare earth materials are usually more like classical Ising spins due to the
large moment value and strong anisotropic crystalline electrical field (CEF)
effect.

1.6 Scope of this thesis

In this thesis, three typical compounds are studied, leading to the
understanding of the quantum phase transitions from different perspectives.

Chapter 3 : Yb3Pt4 Most of the heavy fermion systems are studied in
the strong coupling limit where the Kondo effect plays an important role.
non-Fermi liquid behaviors have been observed near such QCPs. The newly
discovered Kondo breakdown energy scale, the T ∗ line in YbRh2Si2 near the
AF-QCP, has also attracted special interest. It will be interesting to see if this
critical behavior is in general induced by the delocalization of the f moments
or if it is from the fluctuations of the order parameter only. We have chosen a
new Yb-based antiferromagnet Yb3Pt4 as local moment version of YbRh2Si2
where the Kondo effect is negligibly small. Different magnetic properties are
measured near the field induced critical point, and a global phase diagram was
compared to that of YbRh2Si2.

Chapter 4 : YFe2Al10 Fermi liquid theory is usually invalid near the
QCP, due to the strong critical fluctuations, and scaling provides a powerful
description near the critical region. It is rare to find a system where a ’naive’
scaling that assumes the existence of hyperscaling can be fully worked out. We
will show that such a self-consistent scaling of the specific heat and magnetic
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susceptibility has been observed in the 3d electron compound YFe2Al10. The
increase of the resistivity at low temperature may suggest that this material
may be close to an itinerant-localization transition, such as a metal-insulator
transition.

Chapter 5 : Yb2Pt2Pb It has been proposed that the Yb ions in Yb2Pt2Pb
crystallize in a SSL with orthogonal aligned dimers in the 2D ab plane.
Magnetization plateaux and a dome like ordered phase have been observed
in magnetic fields. Moreover, a spinon like excitation has been observed in
neutron scattering experiments, indicating a spin chain like structure along the
crystalline c direction. It thus interesting to see whether the one dimensional
Luttinger liquid physics or the 2D SSL physics with frustrated dimers plays a
more important role in this low dimensional quantum magnetic system.
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Chapter 2

Experimental Techniques

In this chapter, we will briefly describe how our samples are prepared, and how
their magnetic properties are characterized, in order to give a general context
for the data we are going to show in later chapters. We will first introduce
the flux growth technique, which is the way that all three materials studied
in this thesis are synthesized. Then we will introduce the thermal property
measurement methods such as specific heat, magnetization and magnetocaloric
effect. Neutron scattering is a well developed and powerful technique for
studying correlated materials, and it will also be briefly discussed in this
chapter.

2.1 Crystal Synthesis

2.1.1 Flux Growth Method

Quantum criticality has attracted a lot of attention in the research of
condensed matter physics in last decades. Unusual physical properties like
the non-Fermi liquid behaviors and various emergent phases are found near
the quantum critical points (QCPs). In quantum critical systems, interactions
are usually very complex, and subtle disorder or impurities can greatly affect
the true ground state, masking the intrinsic properties of the material. This
makes measurements on high quality single crystal samples essential for the
accurate study of quantum critical behaviors. In addition, measurements on
single crystals give information about the crystal anisotropy, which is crucial
for understanding different magnetic interactions. Also, neutron scattering
experiments on single crystals provides much more detailed information in the
momentum energy (Q−E) space than on polycrystalline samples, which helps
us to determine the full effective Hamiltonian.
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Various methods including Bridgman furnace, Czochralski puller, and
floating zone techniques are employed to grow single crystals[69]. However,
many of these methods are limited to congruently melting compounds, and
the starting composition needs to be very close to the desired product. The
mixture is then heated above the melting temperature of this congruently
melting point before the growth of the crystals. Sometimes this melting
temperature can be very high, and it may exceed the working temperatures of
the available furnaces.

One way to avoid some of these problems is to grow the crystals from
metallic fluxes. A great advantage of the flux technique is that it enables
the growth of high quality single crystals at relatively low temperatures, in
a clean enclosed environment. The flux method is widely used in material
science and condensed matter physics, and it has been explained in many
excellent reviews [70, 71, 72]. In flux growth methods, crystals are grown
from metallic solutions, like the growth of sugar crystals from a saturated
sugar water solution. All the starting materials were first mixed together and
then sealed in argon filled quartz tubes, as shown in fig. 2.1a. These quartz
tubes were then heated in the high temperature furnace (fig. 2.1b). To make
sure all the starting materials are dissolved into the liquid flux, the quartz
tubes usually were kept at high temperatures for a few hours before a slow
cool down to the lower temperatures where growth occurs. By controlling
the cooling rate in different temperature ranges, different compounds were
grown according to their phase diagrams. Many times, to get one single pure
phase, the mixture was quenched from high temperatures, and the flux was
subsequently removed by the centrifuge (fig. 2.1c), with the crystals remaining
inside the growth crucibles (fig. 2.1d).

2.1.2 Growth of Yb3Pt4 and Yb2Pt2Pb

One major difficulty for the growth of Platinum Pt compounds is their
very high melting points. In the case of the binary compound Yb3Pt4, the
melting temperature Tc is ∼ 17000C (fig. 2.2), which is higher than the
maximum working temperature for the quartz tubes (∼ 12000C) and the
maximum temperature for furnaces with SiC heating elements (∼ 15000C).
Also considering the huge vapor pressure of Yb at high temperature, it is
almost impossible to grow Yb3Pt4 single crystals from a pure binary starting
point. What we need to do is to find another metallic flux to lower the melting
point. By checking the Yb - Pb and Pt - Pb phase diagrams (fig. 2.3), one can
see that the melting temperatures of both Pt and Yb are greatly reduced in
presence of lead. This gives a wide temperature range that is accessible with
the furnace, while both Yb and Pt can remain in the liquid phase (as indicated
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Figure 2.1: (a) A sealed quartz tube with raw starting materials contained in
alumina crucibles. (b) High temperature furnaces with SiC heating elements,
which can be heated up to ∼ 15000C. (c) The mixture was quenched at high
temperatures, and the metallic flux was removed by the centrifuge. (d) Some
single crystals (LuFe2Al10 and Yb2Pt2Pb as marked) grown from the flux
method. (Photos are courtesy of Akshat Puri.)
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Figure 2.2: Yb - Pt binary phase diagram. The melting temperature of Yb3Pt4
is very high∼ 17000C, which is higher than the maximum working temperature
(Tmax ≈ 15000C) of the furnace.
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Figure 2.3: Above: Yb - Pb binary phase diagram. Below: Pt - Pb binary
phase diagram. The melting point of Pt is greatly reduced by lead flux, and
gives a wide temperature range that is accessible with the furnace. With the
starting composition Yb:Pt:Pb=9:3.5:87.5, both Yb and Pt remain in liquid
solution down to temperature as low as about 900 K (∼ 6000C), as indicated
by the red circles.
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by the red circles). By choosing the right compositions of the mixture, Yb3Pt4
single crystals were successfully grown at about 8000.

The refined recipe for growing Yb3Pt4 was found to be Yb : Pt : Pb = 9 :
3.5 : 87.5 [73, 74, 75]. The starting mixture with pure Yb, Pt, and Pb was
placed in alumina crucibles, sealed in evacuated quartz tubes and heated to
12000C. After staying at the highest temperature for 4 hours, it was slowly
cooled down to 8000C over about 100 hours. The whole tube was removed
from the furnace and spun in the centrifuge to remove the liquid lead flux,
leaving long bar shaped single crystals (fig. 2.1d).

Since the exact ternary phase diagram of Yb-Pt-Pb is unknown, the growth
of Yb2Pt2Pb is based on the analysis of the two binary phase diagrams. The
new and refined recipe for the growth of Yb2Pt2Pb was found to be similar to
the growth of Yb3Pt4 with the same starting ratio: Yb : Pt : Pb = 9 : 3.5 :
87.5. However, the growth temperature for Yb2Pt2Pb is much lower, which
turns out to be between 8000 ∼ 6000C at this composition [66, 76]. Thus, by
using separate temperature profiles, both Yb3Pt4 and Yb2Pt2Pb single crystals
can be grown from lead flux.

2.1.3 Growth of Ln(Ln=Y, Lu, Yb)Fe2Al10

Compared to the growth of Yb3Pt4 and Yb2Pt2Pb, the growth of the YFe2Al10
family of compounds is relatively simple. Since aluminum (Al) itself has a low
melting point (∼ 6600C), it could be used as a natural self-flux. Based on
the reported Y-Fe-Al ternary isothermal section at 5000C [77], YFe2Al10 is
very likely to be a congruent melting compound, with a melting temperature
higher than 5000C (fig. 2.4). By starting from the ratio of the pure materials
Y : Fe : Al = 4 : 8 : 88, YFe2Al10 single crystals were found to form
around 9600C [78]. By spinning the crucible in the centrifuge around this
temperature, the aluminum flux was successfully removed. Similar compounds
of this family such as LuFe2Al10 and YbFe2Al10 were also grown from Al flux
in a similar way, just with slightly different starting ratios. The only thing
we need to concern ourselves with is the two main competing binary phases
LnAl3 and Fe4Al13, as we can see from fig. 2.4. Both are congruently melting
compounds. The melting temperature of LnAl3 is slightly different for different
cases depending on Ln=Y, Lu, Yb, and we have to vary the starting ratio of
Ln:Fe accordingly. We found that large shiny LuFe2Al10 crystals could be
grown from the composition Lu : Fe : Al = 3 : 5 : 92, and YbFe2Al10 single
crystals could be grown with the ratio Yb : Fe : Al = 5 : 3 : 92. The magnetic
properties of this family of compounds are reported later in chapter 4.
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Figure 2.4: Y-Fe-Al isothermal section at 5000C [77]. The red cross indicates
the starting composition ratio with Y:Fe:Al=4:8:88. τ3 is the desired ternary
compound YFe2Al10 as marked by the red circle.

2.2 Measurement Methods

2.2.1 Resistivity

Resistivity measurements were performed using the standard four wire
technique. Ideal for resistivity measurements are either the long bar or needle
like samples. Shown in fig. 2.5a is a typical resistivity set up of two needle
shaped single crystals on the Dilution Refrigerator (DR) probe. Four pieces
of Platinum wires (Diameter=0.001 inch) were attached to the sample using
silver epoxy. The contact resistance is usually around ∼ 1− 2Ω. Most of the
resistivity data shown later in this thesis were taken using the AC transport
option using the commercial Quantum Design Physical Property Measurement
System (PPMS) with excitation currents from 0.1 to 1 mA, at temperatures
down to 0.1 K, and in fields up to 14 T. A little GE-varnish was used to attach
the sample to the resistivity puck, which helps to improve the thermal contact
between the sample and the puck for low temperature measurements. Some
examples of resistivity curves measured on Yb2Pt2Pb single crystals with field
and current along different directions are shown in fig. 2.5b. The domed phase
is marked by the dashed lines in the figure. No significant anisotropic behaviors
were observed down to 0.5 K for field parallel (B ∥ j) and perpendicular
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Figure 2.5: (a) A typical four-wire resistance set up on the Dilution
Refrigerator (DR) puck. (b) A sample resistivity curve measured on the
Yb2Pt2Pb single crystals with field and current along different directions.

(B ⊥ j) to the current j direction, indicating that this is not a nematic phase
as observed in the metallic ruthenate Sr3Ru2O7 [80].

The measurement of resistance is also central to many other techniques.
As we are going to introduce below, it is necessary for experiments including
specific heat, magnetocaloric effect, and Hall sensor magnetometer. The
differences are that, in those measurements, the resistance is measured and
then transformed to some other physical properties of the sample.

2.2.2 Specific Heat

Field and temperature dependent specific heats were measured using
the Quantum Design Physical Property Measurement System (PPMS) at
temperatures down to 50 mK, and in magnetic fields up to 14 T. The thermal
relaxation method was used in the specific heat measurements. Shown in
fig. 2.6a is a picture of a specific heat puck with a YFe2Al10 crystal mounted
on the platform. On the back, there are two tiny objects. The black one on the
right hand side is the heater, while the one on the left hand side is an additional
thermometer, as marked by the red circles in fig. 2.6b. During a specific
heat measurement, the system was first stabilized at an initial temperature,
and then a heat pulse was given by the heater to make a rise in the sample
temperature. After this heat pulse, the heater power was terminated, and the
sample was allowed to relax back towards the initial puck temperature. The
time dependent heater power and the thermal resistance of the thermometer
are plotted in fig. 2.7a. This thermal resistance was then calibrated to the
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Figure 2.6: (a) A specific heat puck with an YFe2Al10 crystal mounted on the
platform. We can see the wires go below the platform, which are connected
to the thermometer and heater under the platform respectively. (b) The back
of a specific heat puck. The two pieces on the back of the platform as marked
by the red circles are the thermometer and heater.

Figure 2.7: (a) Time dependent thermal power (red) and thermal resistances
(black) during a single specific heat measurement. (b) Calibrated platform
temperature based on the thermal resistance shown in (a). The red line is the
numerical fitting to the heat transport function. [79]
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platform temperature as shown in fig. 2.7b. Thus, the sample temperature
during the whole heating and cooling process was monitored accurately by the
thermometer, and the raw data were fitted numerically with the heat transport
function (red line in fig. 2.7b)

P = CP
dTP
dt

+Kg(TP − Tc) +Kw(TP − TB), (2.1)

0 = Cc
dTc
dt

+Kw(TP − TB). (2.2)

to give the values of the sample specific heat Cp, addenda specific heat, thermal
coupling, thermal time constants and so on [79]. Here P is the thermal power
produced by the heater, and Tc, TP and TB are the temperatures of the sample,
platform and thermal bath respectively, while Kg and Kw are the thermal
conductances as indicated in fig. 2.8a [74, 79]. One crucial step in a good
specific heat measurement is that the sample temperature should be monitored
very accurately during the whole process. As we can see from fig. 2.7, the
thermometer resistance changed about 50Ω for a ∆T ∼ 0.04 K change of the
platform temperature. Usually, the thermal resistance can be measured with
an accuracy of ±1Ω, and this means that the temperature variance could be
easily recorded with an accuracy of ∆T ∼ ±0.001 K. By knowing this fact,
one can use the same specific heat set up to measure another very interesting
property of the material, the magnetocaloric effect (MCE).

2.2.3 Magnetocaloric Effect (MCE)

The magnetocaloric effect (MCE) Γ is observed when a magnetic material
is put in a changing magnetic field, where it will heat up or cool down
[81, 82, 83, 84]. Since MCE is a magneto-thermodynamic phenomenon, it
reflects the basic thermodynamic properties such as entropy, magnetization,
and specific heat of the material according to:

Γ =
dT

dB
=
∂S/∂B

∂S/∂T
= −∂M/∂T

∂S/∂T
= −∂M/∂T

C/T
, (2.3)

and it can be determined indirectly using the measured specific heat and
magnetization in different fields and temperatures. This MCE ratio has been
proposed to be equivalent to the magnetic Grüneisen ratio, which has been
shown to be divergent at QCPs [93, 94]. On the other hand, this effect could
also be directly studied by measuring the field dependent temperature T ∼ B
curve. This is usually done in materials near a phase transition where a giant
entropy change ∆S is involved [85]. Interestingly, MCE has become a unique
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Figure 2.8: (a) Sketch of the MCE technique using the specific heat set up.
Tc, TP and TB are the temperatures of the sample, platform and thermal bath
respectively, while Kg and Kw are the thermal conductances as indicated. (b)
A sample T ∼ B MCE curve of the Yb2Pt2Pb single crystal around 0.25
K with field along the 110 direction using this method. (In the courtesy of
Moosung Kim. [67])

probe to study the low temperature field phase transitions in many quantum
critical magnetic materials [86, 87, 89, 90, 91, 92, 126].

With the same set up as shown in fig.2.6 for a specific heat measurement,
we can measure the MCE using the resistivity option in PPMS. This technique
was initially introduced into our lab by Yuri Janssen. It works very well and
is very efficient for studying the low temperature phase transitions in other
magnetic materials [95, 97]. The sample was first mounted on a specific heat
puck as in a normal specific heat measurement, but with a little more N-
grease to improve the thermal contact. Then, it was cooled down to low
temperatures in high vacuum. After the whole system was stabilized at the
desired temperature, an additional magnetic field was applied, which was
swept up and down through the field induced magnetic phase transitions.
During the process of increasing or decreasing field, the sample temperature
would increase or decrease. This is reflected by the resistance change of the
thermometer, which could be accurately measured. Since the resistance of
the thermometer has already been calibrated with temperature in different
fields, we could use the calibration table to extract real sample temperatures
in different magnetic fields. This gives us an in-situ temperature field (T ∼ B)
relation across the phase transitions.

The primary thing we need to be concerned about here is the heat
relaxation from the sample to the environment heat bath. Usually, the thermal
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contact between the sample and the platform through the N-grease is very
good, and we assume that Tc ≈ TP . Since the experiment was performed
in high vacuum, the only thermal leak from the platform to the thermal
bath is then through the thin wires (fig. 2.6b), which have very low thermal
conductivities at low temperatures (about 10−7 W/K at 1.0 K). By choosing a
sample of the right size, we can always make the measuring time tmuch smaller
than the decay time τ , which depends on the specific heat C and wire thermal
conductance Kw as τ ∼ C/Kw. Thus the whole process can be assumed to
be quasi-adiabatic. By comparing the hysteresis between increasing fields and
decreasing fields, one can also distinguish first order phase transitions from
second order continuous phase transitions. Shown in fig. 2.8b is an example
T vs B MCE curve of the Yb2Pt2Pb single crystal around 0.25 K with field
along the (110) direction [67]. Strong anomalies around 1.25 T clearly indicate
a first order phase transition. By following a single curve with field sweep
up (or sweep down), the symmetry of the temperature increase or decrease
around 1.25 T and 2.3 T suggests an intermediate ordered phase with reduced
entropy, since the material releases heat when it enters this phase and absorbs
heat when it leaves this intermediate phase [97]. A relative entropy change
could also be estimated at the critical points by the slope change across the
phase transitions [75, 92].

2.2.4 Hall Sensor Magnetometer

Most of the magnetic properties reported in this thesis were measured using
the commercial Quantum Design Magnetic Property Measurement System
(MPMS) with superconducting quantum interference device (SQUID), in
magnetic fields up to 7 T at temperatures from 1.8 K to 400 K. However,
for many magnetic materials that we are interested in, magnetic transitions
may occur at much lower temperatures than 1.8 K. Although some other
properties like magnetoresistivity, specific heat and MCE can be measured
down to 0.1 K, they usually give only indirect information about the magnetic
properties below 1.8 K. For many cases, knowing the actual magnetization
at lower temperatures is crucial. To solve this problem, we have used a Hall
sensor as a small dc magnetometer, and it turns out to work very well down to
temperature as low as 0.2 K in fields up to several Tesla. This work was done
in collaboration with Neil Dilley from Quantum Designs and Andrea Candini
from Università di Bologna, Italy [98, 99, 100].
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Figure 2.9: Schematic view of the Hall Effect. The Hall voltage comes from
the Lorentz force experienced by the charges moving in magnetic fields applied
perpendicular to their motion.

Hall Effect

Hall effect sensors measure magnetic fields based on the classical Hall effect
discovered by Edwin H. Hall in 1879. The Hall effect is caused by the
Lorentz force that is experienced by the charges moving in magnetic fields
perpendicular to their motion. Considering the carriers moving in a uniform
conducting material with thickness d, the path of these carriers will be
deflected in the presence of a perpendicular magnetic field B, and charges
accumulate on the two sides that are transverse to the current flow. The
accumulation of the charges generates a transverse Hall voltage, as shown in
fig. 2.9. The magnitude of the Hall voltage VH can be expressed as

VH = RHI ×B/d, (2.4)

where RH is the Hall coefficient. For two dimensional electron systems (2DES),
RH = 1/ne with n being the two dimensional carrier density and e is the
electron charge (≃ 1.6× 10−19C).

For a Hall effect sensor, the carrier density n and the dimension d are
already known, and the Hall voltage is simply proportional to the magnetic
flux. This magnetic flux could be generated by an external magnetic field,
in which case the Hall effect sensor is used to calibrate the magnetic fields.
Alternatively, the magnetic flux may come from the sample magnetization
itself, and in this case, Hall effect sensors could be used as magnetometers.
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Figure 2.10: Schematic view of an experimental Hall sensor configuration. (a)
Top view of the Hall probe. Red region is the active area, and the magnetic
sample is placed close to it. (b)Side view of the Hall probe, which is attached
to a resistivity puck. The external magnetic field B is always parallel to the
driven current in order to minimize the linear background from the applied
external field.

Devices and Setup

Although the Hall effect has been known for more than one hundred
years, the first application of the Hall effect in a device was only realized
in the 1950s. Interest has continued in subsequent years, assisted by
progress in microfabrication and the growth of high mobility two dimensional
electron semiconductor heterostructures. GaAs/AlGaAs heterostructures are
considered to have better performances at low temperatures, and these are the
ones we used in this thesis research [99, 100]. A typical Hall sensor is shown in
fig. 2.10. There are four terminals with the current I running through along
the longitudinal direction, while the Hall voltage VH is measured across the
perpendicular transverse direction. The experiment can be performed as a
standard four wire resistivity measurement.

With this set up, what we measured is the Hall resistance

R = VH/I = RH/d ∗B. (2.5)

Since the dimensional factor d and Hall coefficient RH are already known
and could be assumed as a fixed constants, the output Hall resistance is then
directly proportional to the external magnetic flux B. There are two possible
contributions to this total magnetic flux: B = Bext + Bsamp. The first term
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Figure 2.11: Wiring of the actual Hall probe that we are using. There are two
panels, and each panel is combined with five active regions. However, we only
used one of them. The red circled area is the active region. An empty sensor
with no sample was used as the reference for the subtraction of background.

is the external magnetic field Bext generated by the magnet, and the second
term is the one induced by the magnetic sample Bsamp, which is taken to be
proportional to the sample magnetization M . In order to separate the sample
signal from the background caused by the external field, two methods were
applied.

The first one is to minimize the effect of the external field by aligning the
Hall sensor in such a way that the current flow is parallel to the external
magnetic field B, as indicated in fig. 2.10. From equation 2.5, we can see
that in this configuration only the perpendicular component of the external
field contributes to the Hall voltage. The linear background is greatly reduced
with this configuration in fig. 2.10. In addition, this minimizes the quantum
oscillation of the 2D electron gas at very low temperatures.

The second way is to measure an empty probe which works as a reference
channel. As shown in fig. 2.11, another clean Hall sensor without any sample
was measured at the the same time as the sample, and the data of the reference
channel were subtracted from the sample bridge.

By combining these two methods, a clean signal that originated just from
the sample was isolated. Plotted in fig. 2.12a is an example of the measured
Hall resistance of Yb3Pt4 single crystals. The external magnetic field is parallel
to the driven current I and along the (110) crystal direction. The cusp shaped
feature indicates the antiferromagnetic (AF) phase transition, which could be
clearly seen at low fields, shifting to lower temperatures with increasing fields.
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Figure 2.12: (a) Measured Hall resistance of Yb3Pt4 as a function of
temperature in different magnetic fields. (b) Calibration of the raw Hall
resistance to absolute magnetization. Solid circles are the data measured using
the Hall sensor magnetometer, and the empty circles are the results measured
in MPMS on the same Yb3Pt4 single crystal. These two data sets match each
other very well in the overlap region from 1.8 K to 3.0 K.

No magnetic phase transition was observed down to 0.5 K above the critical
field of 2.0 T. These data are all taken in the commercial PPMS using the dc
resistivity option. With the combination of the 3He or Dilution Refrigerator
(DR) options, one can easily measure the magnetization well below 1.8 K, the
lowest measurement temperature of the standard MPMS magnetometer.

Calibration to Magnetization

To calibrate the measured Hall resistance to the actual sample magnetization,
a few things need to be considered. One difficulty is to relate the geometrical
shape of the sample to the actual flux detected by the sensor. For micro-
size crystals or nano-materials, this is rather difficult, since the magnetic flux
induced by the samples may not be spatially uniform near the Hall sensor
active region. However, in our case, the sample is more like a regular shaped
magnetic bar with the length much larger than the actual Hall sensor active
area. In this case, we can assume that the magnetic flux around the small Hall
sensor region is roughly homogenous, and the effects caused by the sample
edges can be neglected. To get the absolute magnetization, we scaled the data
in fig. 2.12a to the magnetization measured on the same sample in MPMS.
We can see from fig. 2.12b that both data sets are consistent with each other
over the overlapping temperature region from 1.8 K to 3 K. This allows us
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Figure 2.13: Temperature - Field (B − T ) phase diagram of the sample
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to extract the absolute magnetization values of Yb3Pt4 and the magnetic
phase transition line at lower temperatures. As shown in fig. 2.13, the field
temperature phase line extracted from the magnetization measurements using
the Hall sensor magnetometer agrees well with the one extracted from specific
heat measurements.

2.2.5 Neutron Scattering Techniques

Neutron scattering is a well developed technique for studying crystallography
and dynamics in condensed matter physics and material science. Neutron
scattering theory can be found in books and many lecture notes [55, 101, 102,
103, 105]. There are two reasons that neutron scattering techniques are very
important in the research of strongly correlated systems. The first is due to
the basic properties of neutrons, which carry zero charge but have nonzero
magnetic moments. The neutral charge allows neutrons to penetrate deeply
into the sample, and they interact with the nucleus instead of the electron
cloud, as in X-ray experiments. More importantly, the nonzero magnetic dipole
of neutrons makes them sensitive to the magnetic moment of the unpaired
electrons in the the sample, and so the neutrons can be used as a unique
probe for investigating magnetic structures. The second reason that neutron
scattering is quite important is that the neutron energies available at neutron
scattering facilities are close to many excitation energy scales in the condensed
matter physics, like the phonon excitations in crystals, spin waves in ordered
magnets and such. These make neutron scattering well suited for the study of
magnetic order and spin-spin correlations.

The master formula of the magnetic scattering cross section of unpolarized
neutrons is [104]

d2σ

dΩdω
= (rm)

2kf
ki
e−2WF 2(Q)

∑
α,β

(δαβ −
QαQβ

Q2
)

1

(2µB)2
Sαβ(Q,ω), (2.6)

where rm gives the magnetic scattering length with

rm = −2µB
2m

~2
µn = −5.391× 10−13cm. (2.7)

The scattering is corrected by the Debye-Waller factor e−2W for thermal
vibrations. F2(Q) is the magnetic form factor that takes into account that
the scattering is spatially extended over a length scale that decreases with
increasing the transferred momentum Q. The term δαβ − QαQβ/Q

2 enforces
that only magnetic components perpendicular to the scattering vector Q
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contribute to the scattering cross section. The magnetic scattering function is

Sαβ(Q,ω) =
∑
j,j′

eiQ·(Rj−Rj′ )
∑
λ,λ′

pλ⟨λ|Ŝα
j′|λ′⟩⟨λ′|Ŝ

β
j |λ⟩δ(~ω + Eλ − Eλ′). (2.8)

For elastic scattering without energy transfer, the scattering function
Sαβ(Q,ω) can be simplified to [101]

Sαβ(Q,ω) =
∑
l

eiQ·l⟨Ŝα
0 Ŝ

β
l ⟩δ(ω), (2.9)

where l = Rj − Rj′ is the distance between the two ions at Rj and Rj′ . For
a classical, non-ordered paramagnet, there are no correlations between spins
Si and Sj at different sites, and the spin matrix element is time independent,
thus for l ̸= 0,

⟨Ŝα
0 Ŝ

β
l ⟩ = ⟨Ŝα

0 ⟩⟨Ŝ
β
l ⟩ = 0. (2.10)

The only non-zero term is when α = β at l = 0, which equals to [101]

⟨Ŝα
0 Ŝ

β
l ⟩ = δαβ⟨Ŝα

0 ⟩2 =
1

3
S(S + 1). (2.11)

This gives isotropic magnetic scattering, which is proportional to the value
of the magnetic moment S in neutron scattering. However, in a magnetically
ordered state, the spins correlations are not zero, and the magnetic scattering is
now wave vector dependent. The magnetic diffraction peaks can be represented
by the propagation vector τ in addition to the original translational vector of
the lattice. In a ferromagnetic case, the propagation vector τ = 0, and elastic
scattering appears at the same wave vectors as the nuclear diffraction peaks,
while the peak intensity is determined by the magnetic moment direction with
respect to the transferred momentum Q. For antiferromagnetic order, the
propagation vector τ can have nonzero values, and this usually gives new
magnetic peaks in addition to nuclear peaks.

For inelastic scattering, spin wave excitations are usually observed in the
magnetic ordered states due to the breaking of the translation symmetry. A
more interesting question was raised by the study of the strongly correlated
systems like the low dimensional or strongly frustrated quantum magnets. Spin
liquid ground states can be observed in these materials, where translational
symmetry was not broken when approaching the lowest temperature. The
question is whether one could distinguish these dynamically correlated
quantum states from the conventional paramagnets when static order is absent
in both. Because neutrons can actually probe the spin-spin correlations,
even in the absence of static order, magnetic neutron scattering does show
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significant differences. For example, pinch point scattering with a particular
Q dependence that comes from the spin ice rule on the magnetic clusters
has been observed in the Kagome ice [106], and also cluster ring like
scattering was observed in the spinel ZnCr2O4 with the pyrochlore lattice [107].
Exotic excitations like spinons with continuum dispersions were observed low
dimensional spin chains or spin ladder materials [54, 55].

Neutron Sources

Neutron scattering experiments were performed at two neutron sources located
at the National Institute of Standards and Technology (NIST) Center for
Neutron Research in Gaithersburg, Maryland, and at the Spallation Neutron
Source (SNS) at Oak Ridge National Lab in Tennessee. There are two kinds
of neutron sources for neutron scattering studies. The one at NIST, NCNR is
a reactor neutron source, which uses a controlled fission process to produce a
steady flux of neutrons. Neutrons can also be generated by spallation neutron
sources like the one in Oak Ridge National Lab, in which high energy proton
pulses are fired into a heavy metal target, resulting in pulses of neutrons.

The reactor sources have the advantage of stable time independent flux
with higher time averaged intensity. However, spallation neutron sources
have the highest peak flux, which offer significant advantages in measurements
using time-of-flight (TOF) methods. Here we briefly describe several different
instruments employed in this thesis. Further information can be found in the
references [101, 102, 108].

Triple Axis Spectrometer

The triple axis spectrometer was first developed by Bertram Brockhouse
at the NRX research reactor at the Chalk River Laboratory in Canada.
It is well suited to reactor sources with continuous stable neutron flux.
The one used in this thesis is the Double Focusing Thermal Triple-Axis
Spectrometer (BT-7) located at NCNR, NIST. A schematic view of a triple
axis spectrometer is shown in fig. 2.14. The ’triple axis’ corresponds to
the three axes of the monochrometer, the sample, and the analyzer. A
single crystal monochromator selects a particular wavelength defined by the
Bragg relation from the white neutron beam produced by the source. This
determines the energy of the incoming neutrons by fixing the rotation angle
θM . This monochromatic beam is then scattered by the sample, and the sample
orientation can be alternated by rotation of the angle θS. After scattering
from the sample, the neutrons may not just change their momentum but
also their out-going energy. The analyzer performs a similar function as
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Figure 2.14: Schematic view of a typical triple axis spectrometer with the
scattering triangle shown on the lower left corner.
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the monochrometer, defining the final energy of the scattered beam using
Bragg reflection by changing angle θA. Only neutrons with particular selected
energies can be counted by the detectors.

The wave vectors of the incoming (ki) and final (kf ) neutron beams
determine the transferred wave vectorQ and energy E based on the momentum
and energy conservation laws

Q = ~(ki − kf ), (2.12)

E = Ei − Ef =
~2

2m
(k2i − k2f ). (2.13)

These are in turn connected to the three independent rotation angles θM ,
θS and θA. Variation of these angles allows measurements of the scattering
function at any point in momentum and energy space using triple axis
spectrometers.

Time of Flight (TOF) Chopper Spectrometer

In the TOF technique, the incident neutron beam is chopped to create a
pulsed monochromatic beam using mechanical choppers instead of the single
crystal monochromator in the triple axis spectrometer. The rotating speed
of the monochromating choppers selects the neutron velocity vi. In a TOF
spectrometer, the time that it takes the pulsed neutrons to travel from the
chopper to the sample is measured. After scattering from the sample, the
neutron energy changes, and thus the velocity of the neutron beam is modified.
By recording both the positions and time delays of the neutrons as they arrive
at the detectors, the momentum and energy transfers can be calculated. As
shown in fig. 2.15, the distance Ri from the chopper to the sample and Rf

from the sample to the detector could be accurately measured. By recording
the arrival time t at the detector, the final velocity of the scattered neutrons
is then determined according to

t =
Ri

vi
+
Rf

vf
⇒ vf =

Rf

t−Ri/vi
. (2.14)

Based on the energy conservation law (equation 2.4), the energy transfer can
be calculated as

E = Ei − Ef =
1

2
mv2i −

1

2
m(

Rf

t−Ri/vi
)2. (2.15)

The momentum transfer Q is determined by the initial wave vector ki
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Figure 2.15: Schematic view of a generic time of flight (TOF) chopper
spectrometer. Different from the triple axis spectrometer, the incoming
neutron velocity was selected by the monochromatic choppers. In the
scattering triangle, the scattering vector Q varies with the time of flight, and
the transverse energy E is measured through the recording of the time of flight
t.
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Figure 2.16: Schematic view of the design of the Cold Neutron Chopper
Spectrometer (CNCS) at the Spallation Neutron Source (SNS), Oak
Ridge[110].
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and the final wave vector kf . The initial wave vector ki is already known,
however, kf depends on the final energy Ef and the scattering angle of the
arriving neutrons, as shown on the scattering triangle in fig. 2.15. We can
see that the transferred wave vector Q is now coupled to the energy transfer
E. This is different from the triple axis spectrometer, where only one point
in the momentum energy (Q − E) space is measured at each time, where in
TOF spectroscopy a two dimensional array of detectors covering a big range
of momentum and energy (Q−E) is used in TOF spectrometers. This is very
efficient for the study of the excitations over a wide range of momentum Q
space.

TOF techniques can also be used at continuous flux neutron sources,
however, choppers are needed first to provide the pulsed beams for the
monochromating choppers, as for the Disk Chopper Spectrometer (DCS) at
NCNR, NIST [109]. Compared to the reactor sources, the pulsed spallation
neutron sources are naturally more suited for the TOF technique. Shown in
fig. 2.16 is the schematic view of the Cold Neutron Chopper Spectrometer
(CNCS) at SNS, Oak Ridge [110].

Neutron experiments in this thesis using TOF spectrometers were
performed at DCS, (NCNR, NIST) and CNCS, (SNS, Oak Ridge). Both
experiments on oriented arrays of Yb2Pt2Pb single crystals were performed
in the [H, H, L] scattering plane with magnetic field applied along the (1,-1,0)
crystal direction. Since CNCS was built at the Spallation Neutron Source,
the maximum flux intensity is higher than the one at DCS. In addition to
the difference in the flux intensity between DCS and CNCS, the detectors
in CNCS are also different. For DCS, the spectrometer detectors are long
arrays of 3He tubes, and only horizontal positions of the arriving neutrons are
recorded. However, in CNCS, the tubes are also sensitive along the vertical
direction, and detect neutrons at angles as large as ±160 above and below the
horizontal scattering plane [111].
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Chapter 3

Magnetic field tuning of the
antiferromagnet Yb3Pt4

This chapter presents the magnetic properties and phase diagram of the
antiferromagnet Yb3Pt4. Yb3Pt4 orders antiferromagnetically at 2.4 K in
zero field, and the magnetic order can be gradually suppressed to T→0 at the
critical field B=1.9T for field applied in the ab plane. The purpose of these
experiments was to observe how the magnetic properties would evolve through
the magnetic critical points. We first present measurements of the specific
heat, magnetization, magnetocaloric effect and magnetic neutron diffraction.
The field temperature (B-T) phase diagram based on these experiments was
established, and the T = 0 phase transition turns out to be a first order
critical end point (CEP). For further investigation of the nature of the CEP, we
measured the electrical resistivity ρ down to 0.1 K in magnetic fields. No non
Fermi-Liquid (nFL) was observed, and the magnetoresistivity was dominated
by the scattering of conventional quasiparticles from paramagnetic fluctuations
of Yb local moments. Based on these experiments, we conclude that in contrast
to heavy fermions like YbRh2Si2, Yb3Pt4 represents an extremely simple regime
of f -electron behavior where the Yb moments and conduction electrons are
almost decoupled, where Kondo physics plays little role.
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3.1 Introduction

Materials where magnetic order can be suppressed to low or even vanishing
temperatures have proven to be rich sources of new physics. In
different families of compounds, based both on transition metal and rare
earth moments, the relative weakness or absence of competing magnetic
phases makes it possible to observe new types of ordered states, most
notably superconductivity [28, 29] and quasi-ordered phases such as ‘spin
nematics’ [80], that would normally be obscured. The magnetic excitations are
greatly modified when the onset of magnetic order occurs at low temperatures,
due to the importance of quantum mechanical fluctuations between the ordered
and disordered states, leading to their characteristic E/T scaling [16, 17]
and to unusual temperature divergencies in the specific heat and magnetic
susceptibility [10, 12, 112, 113, 114, 115]. It is a matter of continuing
debate as to how these fluctuations enable or destabilize novel orders,
for instance whether they provide a pairing mechanism for unconventional
superconductors [116].

Very few compounds form with magnetic order restricted to zero
temperature, and in most cases it is necessary to use pressures, compositions,
or magnetic fields to tune the ordering temperature to T = 0 to form a
quantum critical point (QCP) if magnetic order is continuous, or a quantum
critical end point (QCEP) if the magnetic transition becomes first order. It
is well appreciated that quantum critical compounds are exquisitely sensitive
to disorder, and it has been established that even modest amounts of disorder
can change the order of magnetic transitions if the transition temperature
is sufficiently low [7, 8, 117]. Pressure tuning of magnetic transitions has
an appealing simplicity, since it largely avoids these concerns about disorder,
but experimental access is somewhat limited, due to the bulky equipment
needed for high pressure measurements. Thermodynamic measurements are
especially problematic at high pressures, although they are of particular
value for understanding how cooperative phases are stabilized at the lowest
temperatures. For these reasons, magnetic field tuning of magnetic transitions
is increasingly attractive, although it has been noted that the quantum
criticality induced by field and pressure within a single material may not be
identical [118, 119, 120].

Magnetic fields affect the stability of magnetic order at two different levels.
First, fields can destabilize the magnetic structure, selected by the system as
the lowest energy configuration for T → 0 in zero field. This is effected by
the suppression of critical fluctuations, hampering the establishment of long-
ranged and long lived magnetic correlations that can lead to magnetic order
itself. Second, magnetic fields can change the properties of individual magnetic
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moments as well, resulting in Zeeman splitting of the states of the crystalline
electric field manifold, and in some cases by the suppression of moment
compensation by the Kondo effect. Both effects are expected to be important
for heavy fermion compounds, where two limiting behaviors can be identified.
In one case, magnetic order emerges at TN from a paramagnetic state where
the moments are highly localized, having only a weak exchange coupling to the
conduction electron states whose energy scale kBT0 ≤ kBTN. Alternatively, the
crystal field states can be extensively broadened via hybridization, possibly to
the point that the localized character can be considered minimal or absent
when magnetic order occurs at kBTN ≤ kBT0.

Field tuning experiments have been extensively pursued in complex systems
like CeCu6−xAux [118] and YbRh2Si2 [121], where the antiferromagnetic
phase line remains continuous as TN → 0 at a quantum critical field
BQCP. It is evident here that not only does the magnetic order evolve
with field, but also the underlying electronic structure can itself be critical
at or near BQCP [10, 122]. We present here an experimental study of
the field-temperature phase diagram of the heavy fermion antiferromagnet
Yb3Pt4. Yb3Pt4 orders antiferromagnetically at a Néel temperature TN = 2.4
K [73]. While Yb3Pt4 is metallic, magnetic order develops directly from a
paramagnetic state where the fluctuating moments correspond to the ground
doublet of the crystal field split Yb3+ ion, with no indication of any Kondo
effect. We will argue here that the relative simplicity of the antiferromagnetic
order in Yb3Pt4 allows us to explore the field tuning of antiferromagnetic order
without the complexities of electronic delocalization that are found in systems
like YbRh2Si2.

3.2 Experimental Details

Single crystals of Yb3Pt4 were grown from lead flux (fig. 3.1(a)), and powder
x-ray diffraction measurements were used to verify the rhombohedral Pu3Pd4

structure type [73, 75]. The field B and temperature T dependent dc
magnetizationM(B, T ) and ac magnetic susceptibility χ′

ac was measured using
a Quantum Design Magnetic Properties Measurement System (MPMS) for
temperatures above 1.8 K, and at lower temperatures using a Hall sensor-based
technique that was calibrated to the MPMS data above 1.8 K [98, 99, 100].
The specific heat was measured for temperatures that ranged from 0.1 K to
4 K, and in fields as large as 3 T using a Quantum Design Physical Property
Measurement System (PPMS), equipped with 3He and dilution refrigerator
inserts. Measurements of the magnetocaloric effect (MCE) were performed in
high vacuum using the PPMS 3He specific heat puck where the sample was
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Figure 3.1: (a) A Yb3Pt4 single crystal grown from lead flux. The long axis is
the c axis. (b) Unit cell of the crystal structure of Yb3Pt4. The red solid lines
indicate the shortest bond between the nearest neighbor Yb atoms. [75]

heat sunk to a calibrated resistive thermometer. By sweeping the magnetic
field up and down at ∼ 20 − 50 Oe/sec, the sample temperature variation
can be obtained by measuring the thermometer resistance at different fixed
bath temperatures. Because the thermal link between the sample platform
and calorimeter frame is very weak, about 1.7 × 10−7 W/K at T = 1.0 K
for this case, the estimated relaxation time for a big Yb3Pt4 sample of about
17 mg used in MCE measurements could be as large as 300 sec. Since the
thermometer resistance can be measured in less than one second, the heat
leak during this measuring time is negligible, and it is assumed that these
experiments are carried out in the quasiadiabatic limit. Neutron diffraction
was carried out on a 65 mg single crystal of Yb3Pt4 at the NIST Center for
Neutron Research using the BT- 7 double focusing triple-axis spectrometer
with the neutron wavelength λ = 2.47 Å. Since the anisotropy within the easy
ab plane is very small, the field direction within the ab plane is not specified.

3.3 Crystal and Magnetic Structure

X-ray diffraction shows that Yb3Pt4 crystallizes in the reported rhombohedral
Pu3Pd4-type of structure [124], which has 18 Yb atoms per unit cell, all with
the same site symmetry, and 24 Pt atoms per unit cell, with three different
site symmetries fig. (3.1(b)). In zero field, Yb3Pt4 orders antiferromagnetically
at the Néel temperature TN = 2.4 K [73] and the magnetic structure
was determined from neutron diffraction measurements using representation
analysis fig. (3.2) [75]. The fundamental building block of this q = 0
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Figure 3.2: (a) Magnetic structure of Yb3Pt4 in zero field antiferromagnetic
ordered state below 2.4 K. The arrows indicate the Yb magnetic moments.
(Figure is courtesy of Yuri Janssen [75].)
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antiferromagnetic structure is a triad of Yb moments, each rotated 120 degrees
with respect to each other. Each triad is matched by a reflected triad to form
octahedra, which are stacked in a staggered fashion along the c-axis to form
the overall magnetic structure.

3.4 Magnetic and Thermal Properties

3.4.1 Crystalline Electrical Field (CEF)

Magnetization measurements indicate that the hard axis is along the c-axis,
and the easy axis lies in the ab plane. The magnetic anisotropy is weak inside
the ab plane, with χ[110]/χ[100] ≃ 1.07. It is much bigger between the ab plane
and c axis, with χab/χc ≃ 6 at low temperatures. There is significant evidence
that the Yb moments in Yb3Pt4 are spatially localized over much of the range
of experimental temperatures, and so their f electrons are excluded from the
metallic Fermi surface. The magnetic susceptibilities for fields along both the
c axis and in the ab plane are in agreement with Curie-Weiss expressions above
≃ 150 K, giving a paramagnetic moment about 4.24 µB/Yb, as expected for
trivalent Yb [73]. A pronounced anomaly in the zero field specific heat C
is well described by a Schottky expression involving four crystal-field-split
doublets, just as expected for Yb3+ in a crystal symmetry that is lower than
cubic. Inelastic neutron scattering measurements confirm that there are four
magnetic doublets that are well separated in energy, and since the first excited
state is ≃ 7.5 meV (∼ 87 K) above the ground state fig. 3.3(a) [75], this ground
doublet dominates the magnetic properties of Yb3Pt4 at low temperatures.
Antiferromagnetic order occurs in Yb3Pt4 at 2.4 K, signalled by a mean field
peak in the specific heat fig. 3.3(b) [73]. The entropy reaches ∼ 0.8 Rln2 at
TN, confirming that the doublet moment orders with a minimum of critical
fluctuations or with appreciable suppression of the ordering moment via the
Kondo effect. Triple axis spectroscopy was used to show that the temperature
evolution of the spin waves in the antiferromagnetic state [123] is similar to
that of the magnetic order parameter, suggesting that the spin waves are
conventional and arise from the action of the exchange coupling on the crystal
field split single ion states.

3.4.2 Low Temperature Specific Heat

We have measured the magnetic and electronic specific heat CM of Yb3Pt4 with
different values of the magnetic field B in the ab plane at low temperatures,
as shown in fig. (3.4(a)). Since the magnetic anisotropy inside the ab plane
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Figure 3.3: (a)Inelastic neutron scattering of Yb3Pt4 powder samples. The
arrows at peaks around 7.5 meV, 21 meV and 30 meV indicate different Yb3+

crystal field energy levels. The last peak at 34.5 meV is a spurious peak that
comes from the instrument. (b)Magnetic specific heat of Yb3Pt4 in zero field
(blue circles), found by subtracting the lattice contribution estimated from
Lu3Pt4 specific heat data from the measured specific heat. The red curve
is the fitting based on the crystalline electrical field configuration indicated
above. The black line is the entropy calculated from the magnetic specific
heat. The green line is the fit to the mean field expression of the specific heat
at the magnetic phase transition. Inset: Measured zero field specific heat of
Yb3Pt4 (dark yellow circles) and the nonmagnetic counterpart (black circles).
[75]
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is very small, we do not specify the magnetic field direction inside the ab
plane for all the experiments presented here and below. In low fields, the
specific heat jump at TN has a triangular shape evocative of a mean-field
transition. TN decreases with increasing field, while the magnitude of the
ordering anomaly decreases and eventually becomes undetectable for fields
greater than ≃ 1.75 T, where TN < 1.2 K. While these data may suggest that
the antiferromagnetic phase line TN(B) terminates at a critical endpoint with
TN = 1.2 K, B = 1.75 T, it is also possible that the phase line simply becomes
very steep as TN → 0. To distinguish between these two possibilities, field scans
of the specific heat CM(B) were performed at different fixed temperatures
(fig. 3.4(b)). Very different behaviors were found above and below 1.2 K.
For T ≥ 1.2 K, there is a step in CM(B) as the field transits the phase
line TN(B), reminiscent of the step that is found in CM(T ) when increasing
temperature is used to suppress antiferromagnetic order in a fixed magnetic
field (fig. 3.4(a)). This step evolves into a broad peak centered at TN(B) for
T ≤ 1.2 K, whose magnitude decreases and becomes very small at the lowest
temperatures (fig. 3.4(c)). There is no measurable change in the field at which
the peak in CM(B) occurs for any temperature below ≃ 0.9 K, indicating
that within the accuracy of our measurements the antiferromagnetic phase
line becomes vertical in the B − T plane as TN → 0 for the magnetic field
B0 = 1.85 T. The full antiferromagnetic phase line TN(B) determined from
field sweeps of the specific heat C is presented in fig. 3.4(d). The phase line
abruptly deviates from this behavior as the field approaches 1.85 T, and since
its final approach to the T = 0 axis cannot be described by any power law,
quantum criticality is ultimately avoided in field tuned Yb3Pt4.

3.4.3 Magnetization

A more detailed picture of the antiferromagnetic phase transition is revealed
by the magnetization measurements. The temperature dependencies of the
magnetization M/B were measured in different fixed fields B (fig. 3.5(a)),
displaying distinct cusps at TN. As we found in the specific heat measurements,
TN is driven to lower temperatures by the application of magnetic fields B, and
the values of TN(B) agree very well between the two measurements (fig. 3.4(d)).
The ordering anomaly in M(T )/B broadens and is no longer observed above
0.5 K for B ≥ 1.85 T. Given the vertical nature of the phase line TN(B)
revealed by the specific heat measurements, we turn to field sweeps of the
magnetizationM(B) to clarify the phase behavior at the lowest temperatures.
Fig. 3.5(b) shows that M(B) is initially linear in field, but deviates from
this initial slope near the field-driven transition at 1.85 T before becoming
linear again with a much smaller slope at the highest fields. With decreasing
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Figure 3.4: (a) Temperature dependencies of the magnetic specific heat CM

in different magnetic fields as indicated. (b) Field dependencies of CM at
different fixed temperatures, as indicated. (c) Field dependencies of CM/T at
fixed temperatures below 0.7 K, as indicated. Dashed line shows that the phase
line TN(B) becomes field independent for TN ≤ 0.9 K. (d)Antiferromagnetic
order is found in the shaded area of the field -temperature phase diagram of
Yb3Pt4, where the phase boundary TN(B) is determined from field scans of the
specific heat CM (•), from the temperature dependencies of the magnetization
M, carried out in different fixed fields (�), from the field dependencies of the
magnetization M, carried out at different fixed temperatures (N), and from the
magnetic intensity of the (110) Bragg peak, measured in a neutron diffraction
experiment for different fixed temperatures and fields (�). Error bars indicate
the width of the moment step in the neutron diffraction experiment. Vertical
dash - dot line indicates the 1.85 T field at which TN → 0. The magnetic field
in (a)-(d) is perpendicular to the c axis. Solid lines in (a)-(d) are guides for
the eye.
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extrapolations of low field M(B).

temperature (fig. 3.6(a)), this slope change becomes sharper, suggesting that
the associated differential susceptibility χ(B) = dM/dB is becoming very
large at TN(B). Indeed, fig. 3.6(b) shows that there is a distinct peak in χ(B)
that becomes sharper and increases strongly in magnitude as the temperature
decreases. We emphasize that no hysteresis is observed between measurements
performed with increasing and decreasing fields, at any field or temperature.
Figure 3.7 shows that the maximum value of the susceptibility χ at TN(B)
initially increases according to a power law χ ∼ T−1/2, but saturates below
≃ 0.35 K. We considered the possibility that experimental factors may play
a role in this saturation, for instance the degree of thermal sinking of the
sample on the Hall sensor, found to be appreciable below ≃ 0.15 K, as well the
precision of theM(B) measurement itself, which limits the degree of divergence
possible in χ(B), obtained by numerically differentiating M(B). These effects
are minimal above 0.2 K, where the saturation of the power law divergence
of χ(T ) primarily reflects a broadening of the antiferromagnetic transition,
due either to disorder in the sample or alternatively by thermal or quantum
fluctuations.
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3.4.4 Magnetic Neutron Diffraction

The most direct information about the evolution of antiferromagnetic order
with field and temperature comes from neutron diffraction measurements.
We previously showed that the magnitude of the magnetic part of the (110)
Bragg peak in zero magnetic field obeys a mean field temperature dependence,
consistent with the mean field character of the specific heat near TN [75].
Fig. 3.8(a) confirms that magnetic field decreases the magnitude of the order
parameter, and for temperatures larger than ≃ 1.2 K, it drops smoothly to
zero along the antiferromagnetic phase line. We have added these critical
fields and temperatures to the phase diagram in fig. 3.4(d), showing that they
are in good agreement with values for TN(B) obtained from specific heat and
magnetization measurements. For T ≤ 1.2 K, there is a distinct broadening of
the transition, and at the lowest temperatures there is a pronounced step in
the moment ∆M ≃ 0.2µB/Yb centered at the critical field B0 = 1.85 T. Like
the step in M(B), the breadth of the step in the ordered moment remains
considerable, even at the lowest temperatures. Fig. 3.8(b) shows that the
transition widths found in the two experiments are very similar, ≃ 0.25 T.

3.4.5 Magnetocaloric Effect (MCE)

The picture that emerges from the specific heat, magnetization, and neutron
diffraction experiments is that the antiferromagnetic phase transition is
continuous and mean-field like in low fields, but when magnetic fields suppress
TN to values less than ≃ 1.2 K, the broadened steps in the moment
suggest that the transition may develop a first-order character. To test this
hypothesis, we have carried out measurements of the magnetocaloric effect
(MCE) to determine if a latent heat is associated with the antiferromagnetic
transition along the vertical part of the phase line, i.e. when TN ≤ 1.2
K. The MCE is the temperature change of a material when a magnetic
field is changed adiabatically [81, 82, 83, 84], and it has been used to
be a practical and sensitive way to detect latent heat at magnetic phase
transitions and to study the quantum criticality in various correlated electron
systems [86, 87, 89, 90, 91, 92, 126]. The results of MCE are shown in
fig. 3.9(a), where the solid line represents the sample temperature T , measured
as the magnetic field is scanned. A clear increase in the slope dT/dB is
observed as the antiferromagnetic phase is excited at TN(B), but there is
no discontinuity or jump in T (B) anywhere along the phase line, either for
TN ≥ 1.2 K where the transition is definitively continuous, or at lower values
where the nature of the transition is more ambiguous. We note that no
differences are found along the phase line between increasing and decreasing
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entropy occurs along the field independent antiferromagnetic phase line TN(B).

field sweeps. To verify the adiabatic condition in the MCE measurements,
we also calculate the entropy from the specific heat we showed earlier. If
the MCE were carried in the adiabatic limit, each MCE curve should also
be an equal entropy line. As shown in fig. 3.10, the MCE curves does show
a trend that is very similar to the one we have calculated. Thus we believe
that the MCE measurements were performed close to the adiabatic limit at
low temperatures. Since the MCE measurements find that no latent heat is
associated with the antiferromagnetic phase line in Yb3Pt4, we conclude that
the transition is continuous for all nonzero values of TN.

Since the MCE experiments approximate the adiabatic condition, the slope
differences at TN(B) found in fig. 3.9(a) imply that the antiferromagnetic
and paramagnetic states have different entropies, and that the difference
between their respective entropies ∆S becomes increasingly small with reduced
temperature. This conclusion is supported by the field dependence of the
entropy S, extracted from specific heat measurements (fig. 3.9(b)), where
we see a broad maximum in S at TN with a magnitude that decreases with
decreasing temperature. Despite the steps observed in M(B) and neutron
diffraction experiments for T ≤ 1.2 K, the MCE measurements apparently rule
out a first order antiferromagnetic transition in Yb3Pt4 for nonzero TN. Does
this argument extend to TN = 0 ? The Clausius−Clapeyron equation relates
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the slope of the antiferromagnetic phase line dTN/dB to the differences between
the magnetizations and entropies of the antiferromagnetic and paramagnetic
phases at T = 0:

dTN
dB

= −∆M

∆S
. (3.1)

The third law of thermodynamics requires that ∆S = 0 for T = 0, and
the vertical nature of the phase line TN at the critical field B0 implies that
dTN/dB → −∞ for TN = 0. The Clausius−Clapeyron equation is satisfied at
TN = 0 when the transition is between two states with different magnetizations,
i.e. ∆M ̸= 0, as we have seen in both the magnetization and neutron
diffraction measurements. Our conclusion is that the antiferromagnetic phase
line TN(B) in Yb3Pt4 is continuous at all nonzero temperatures, but terminates
in a T = 0 first order transition at a critical field B0 = 1.85 T.

3.4.6 Magnetic Phase Diagram and Critical End Point
(CEP)

Our current understanding is that there is no universal path by which
magnetic fields suppress antiferromagnetic order to zero temperature in heavy
fermion compounds, and the schematic phase diagrams presented in fig. 3.11
seek to categorize the simplest possibilities that have been identified by
experiments. They are not meant to capture the full complexity of heavy
fermion compounds, which may pass through a multiplicity of different
structures en route to the collapse of magnetic order [12], but rather to focus on
the final phase line that separates magnetic order from the paramagnetic state.
To our knowledge, all heavy fermion antiferromagnets order via a continuous
transition in zero field. Fig. 3.11(a) depicts the situation found in systems
like YbRh2Si2 [121], YbPtIn [125], CeCu6−xAux [118], and CeIn3−xSnx [126],
where the antiferromagnetic phase line remains continuous as TN → 0 at a
quantum critical field BQCP. Bulk properties such as the magnetization scale
as functions of T and (B − BQCP) [40, 121], and the magnetic Grüneisen
parameter diverges as well for T = 0 and B = BQCP [93, 94]. Given that all
experiments have a lower temperature limit, it is fair to say that it is not known
in any compound whether the antiferromagnetic phase line is continuous to
TN = 0. However, it is evident that the scaling associated with the quantum
critical point at TN = 0 and B = BQCP dominates many of the measured
quantities over a wide range of fields and temperatures.

A very different situation is realized when magnetic fields are applied
to conventional antiferromagnets such as rare earth aluminum garnets and
FeCl2 [127, 128, 129], which have continuous antiferromagnetic transitions in
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Figure 3.11: Schematic phase diagrams for field tuned antiferromagnets. (a)
The phase line of a field tuned antiferromagnet remains second order at all
fields (solid line), ending at a continuous transition with TN = 0, i.e. a
quantum critical point (•). (b) The phase line of a field tuned antiferromagnet
is initially second order(solid line), but this phase line terminates at a tricritical
point(N). For smaller values of TN, the phase line is first order (dashed line),
ending at a first order transition where TN = 0, i.e. a quantum critical endpoint
(◦). (c) An intermediate situation between (a) and (b), where the first order
transition line in (b) has shrunk to a single point with TN = 0, a quantum
critical endpoint (◦). For all nonzero values of TN, the phase line is continuous
but strongly modified from the second order line shown in (a). (d) A three
dimensional phase diagram with no magnetic order for T > 0 at any value of
field or other non-thermal variable Γ, such as pressure. There is a quantum
critical endpoint (◦) in the T = 0 B − Γ plane, that separates a first order
line (dashed line) from a line of continuous transitions (solid line) that ends in
a quantum critical point for B = 0 (•). The red vertical arrow indicates the
effect of lowering temperature in a metamagnet, defined as a system that has
no long-ranged order for T ̸= 0, but positioned in the B − Γ parameter space
close to a quantum critical endpoint(◦).
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zero field (fig. 3.11(b)). Here, the antiferromagnetic phase line is initially
second order, but terminates at a tricritical point [130, 131]. Since magnetic
order involves a broken symmetry, the phase line must continue to TN = 0,
and it does so as a line of first order transitions that terminate at a QCEP.
Scaling is found in systems of this type, both of the conventional variety in
low and zero fields, but more prominently in the vicinity of the tricritical
point [129, 132]. This phase diagram is very similar to the one that was both
predicted [7] and experimentally realized [133] in field and pressure tuned
metallic ferromagnets where disorder is weak. To our knowledge, the phase
diagram in fig. 3.11(b) has been found only in ferromagnetic UGe2 [134], and
not in any antiferromagnetic heavy fermion compounds.

The phase diagram of fig. 3.11(c) represents a situation that is intermediate
between figs. 3.11(a) and 3.11(b), in that the line of first order transitions has
now shrunk to a single point at T = 0, and it is the influence of this point
that keeps the lowest temperature part of the phase line from becoming the
more conventional second order phase line found in YbRh2Si2 (fig. 3.11(a)).
This is the phase diagram that best describes Yb3Pt4, and perhaps as well
Yb5Pt9 [135], CeRh2Si2 [136], YbNiSi3 [137, 138] and CeNiGe3 [139]. Here,
the phase line is always continuous for TN ̸= 0, and no latent heat is found
anywhere along the phase line. The phase line superficially resembles the first
order phase line of fig. 3.11(b), since it becomes vertical as TN → 0. The initial
stabilization of antiferromagnetic order as a second order transition at B = 0
implies the general importance of long wavelength critical fluctuations through
much of the B − T plane, and the initial divergence of the susceptibility at
the critical field where χ(T ) ∼ T−x, generally reflects these correlations. Since
a true quantum critical point is ultimately avoided in systems described by
the phase diagram in fig. 3.11(c), the longest wavelength fluctuations must
either be absent, as in disordered systems, or are prohibited in some way from
contributing to the physical observances. We hypothesize that their absence is
responsible for the breakdown of scaling near the QCEP, and for the general
appearance of the phase line, which increasingly resembles a first order phase
line, lacking only the latent heat. Ultimately the failure of universality as
TN → 0 causes the antiferromagnetic phase line to terminate in a first order
phase transition at zero temperature TN = 0, also known as a quantum critical
end point.

The most unimpeded view of the properties of a quantum critical endpoint
is found in systems in which no magnetic order is present, at least for T ̸= 0.
The most heavily studied examples of these so-called metamagnetic systems
are CeRu2Si2 and Sr3Ru2O7 [140, 141, 142]. The signature of metamagnetism
is steps in the magnetization whose breadth decreases with decreasing
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temperature. In some cases, a full field-driven first order transition results
below a certain onset temperature [143], but for CeRu2Si2 and Sr3Ru2O7 there
is no sign of long-ranged magnetic order at any field or temperature. In both
cases, there is a pronounced enhancement of the magnetization and specific
heat near the critical field, and with reduced temperature the associated
magnetic susceptibility begins to diverge as χ(T ) ∼ T−x [144]. Instead of
a maximum in the specific heat, a dip is found in C at the critical B. Unlike
the case of Yb3Pt4 where the termination of the nonzero temperature part of
the phase line necessitates a true phase transition at T = 0, no fine tuning
is required for the metamagnets. All that is required is that the metamagnet
is sufficiently close to a quantum critical endpoint, accessible by tuning a
nonthermal variable such as field angle in Sr3Ru2O7 [142], or pressure in either
system [95, 145] (fig. 3.11(d)).

Unlike the case of clean ferromagnets, where it is theoretically and
experimentally agreed that the phase line is initially continuous at small fields,
but ultimately must become first order when the Curie temperature becomes
sufficiently small, there is much less theoretical guidance for the range of
behaviors that might be possible for antiferromagnets when TN → 0. There is
a continuing need to identify new systems that exemplify the differing phase
diagrams that are represented in fig. 3.11. There are significant and intrinsic
obstacles that make the search for such systems inherently challenging.
One complication is that the suppression of magnetic order can enable the
stabilization of competing collective phases, most notably superconductivity,
as found in CeCoIn5 [147], CeRhIn5 [204], and CeCu2Si2 [148]. However
interesting and significant, these new phases obscure the part of the phase
diagram where antiferromagnetic order vanishes. Similarly, experiments must
be conducted at the very lowest temperatures to determine whether the
quantum critical scaling is robust, or alternatively if universality fails and the
antiferromagnetic transition becomes first order when TN becomes sufficiently
small.

Perhaps the most compelling aspect of the phase diagrams in fig. 3.11 is
their potential relationship to the underlying electronic structure. This has
been studied extensively in the metamagnets, and in CeRu2Si2 magnetic fields
are thought to drive a continuous evolution of the electronic structure from
the B = 0 limit where one of the spin polarized Fermi surfaces is favored in
field, with the other vanishing at a Lifshitz transition at the metamagnetic
field [149]. In contrast to this case where the electrons are always delocalized,
a rather different situation is realized in the heavy fermion YbRh2Si2 [121].
Here the local moment character of the Yb moments is completely quenched
near a Kondo temperature TK that is well in excess of the Néel temperature.

80



Consequently, antiferromagnetic order must be considered to be a collective
instability of the fully hybridized Kondo lattice, and magnetic fields drive
a delocalization transition at the critical field BQCP that is akin to a Mott
transition, increasing the size of the Fermi surface [150]. Much of the B − T
phase diagram is affected by this transition, which coincides at T = 0 with
the antiferromagnetic quantum critical point in pure YbRh2Si2 [10], but
remains a separate transition under Co and Ir doping [122]. In contrast, the
antiferromagnetic order that is found at the Néel temperature TN in Yb3Pt4 at
zero field involves well localized Yb moments that are essentially unaffected by
the Kondo effect, which we conclude occurs below a characteristic temperature
TK that is smaller than the ordering temperature itself, i.e. TK ≤ TN [73, 75].
The antiferromagnetic order is conventional, with a staggered Yb moment
that is consistent with a doublet ground state [75], and with spin waves that
result from the exchange splitting of this state of the crystal electric field
manifold [123]. It is tempting indeed to speculate that the very different
natures of the Yb magnetism in YbRh2Si2 and Yb3Pt4 may be responsible
for their very different antiferromagnetic phase diagrams, represented in figs
3.11a, and 3.11c, respectively. Lacking a more comprehensive set of well
characterized compounds with vanishing Néel temperatures, this association
remains for now unproven.

To conclude, we have used measurements of the specific heat,
magnetization, neutron diffraction, and magnetocaloric effect to establish
the field-temperature phase diagram of the heavy fermion antiferromagnet
Yb3Pt4. The antiferromagnetic transition is initially continuous in zero field,
but magnetic fields applied in the easy ab plane reduce the Néel temperature in
Yb3Pt4 to zero temperature at a critical field ≃ 1.85 T. The antiferromagnetic
phase line becomes very steep at low temperatures, and within the accuracy of
our measurements becomes independent of field as TN → 0. The appearance
of the phase line is suggestive that the antiferromagnetic transition in Yb3Pt4
becomes first order, however magnetocaloric effect measurements find no
evidence for a latent heat for any value of TN. We conclude that the
antiferromagnetic transition in Yb3Pt4 is continuous, at least for TN > 0. A
step in the moment is observed at the critical field in both magnetization and
magnetic neutron diffraction measurements, and the associated susceptibility
χ = dM/dB at the critical B initially increases with decreasing temperature,
i.e. χ ∼ T−1/2, signifying that the step width is decreasing. However,
the incipient divergence in χ is cutoff below ≃ 0.35 K, a behavior familiar
from metamagnetic systems like CeRu2Si2 and Sr3Ru2O7. Accordingly, we
propose that the low temperature properties of Yb3Pt4 are controlled by the
quantum critical endpoint that is created when the antiferromagnetic phase
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line terminates at zero temperature. These measurements position Yb3Pt4
as one of the few antiferromagnets from the heavy fermion class that do not
seem to have true quantum critical points, formed when a second order phase
transition is suppressed to zero temperature by magnetic field tuning. The
field temperature magnetic phase diagram of Yb3Pt4 seems to form a link
between those of most field-tuned heavy fermions, which are dominated by a
quantum critical point, and those of conventional magnetic insulators, where
the central features are a tricritical point and a line of first order transitions
terminating in a quantum critical end point.

3.5 Localized Moment Behaviors

YbRh2Si2 exemplifies the full range of phenomena that can be associated
with a field-driven QCP [10]. First, the B = 0 Néel temperature is only
0.065 K, with a correspondingly small ordered moment ≃ 10−3µB/Yb. TN
is suppressed continuously to TN = 0 with a field B = 0.66 T [154, 155].
Quantum critical scaling of the field and temperature dependencies of the
specific heat C and the magnetization M are reported in the vicinity of
the QCP [121]. non-Fermi liquid temperature dependencies are observed
near the QCP, such as a diverging specific heat C/T ≃-ln(T ), and a linear
temperature dependence for the electrical resistivity ρ(T ) = ρ0 + aT , observed
over several decades in temperature [121, 154]. Fermi liquid behavior is found
once the antiferromagnetic order is suppressed by fields B ≥ BQCP, with
ρ = ρ0 + A(B)T 2 and C = γ(B)T . The Fermi liquid parameters A and γ
indicate that the quasiparticle mass is strongly enhanced and even diverges
as B → BQCP from above, signalling the breakdown of the Fermi liquid
itself at the QCP. Associated with this breakdown is an electronic localization
transition, where the number of states contained by the Fermi surface changes
at or near the QCP [10, 31, 122, 152, 156].

The question that we ask here is what part of this spectrum of quantum
critical phenomena survives in a more minimal system, where electronic
localization does not occur. Yb3Pt4 is an ideal system in which to explore
this issue. Metallic Yb3Pt4 orders antiferromagnetically at TN = 2.4 K [73],
where the mean-field like development of the ordered parameter taken from
neutron diffraction measurements results in a T=0 moment of 0.8 µB/Yb [75].
Specific heat and inelastic neutron scattering measurements indicate that the
antiferromagnetic order develops from Yb moments in a crystal field split
doublet ground state that is well separated in energy from the first excited
state [123]. The rapid recovery of the magnetic entropy S(TN) = 0.8 Rln2
suggests that there is little evidence that Kondo compensation of the Yb
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moments has occurred as T → TN, indicating that TK ≤ TN. For these reasons,
it is believed that the Yb moments in Yb3Pt4 are spatially localized, and only
weakly coupled to the conduction electrons. Given the apparent irrelevance
of Kondo physics to Yb3Pt4, it likely that the 4f -holes of the Yb ions are
excluded from the B = 0 Fermi surface. The complexity of the unit cell
in Yb3Pt4 precludes a direct test of this conclusion from electronic structure
calculations.

Magnetic fields suppress antiferromagnetic order in Yb3Pt4, and we find
that TN = 0 for the critical end point (CEP) BCEP = 1.85 T. The Clausius -
Clapeyron equation is obeyed here, and although the antiferromagnetic phase
line intersects the T = 0 axis vertically and so cannot be fitted to a power-
law as TN → 0, TN(B) is continuous for TN > 0 [95], possibly following
a mean-field expression. We present here the results of experiments that
seek answers to three questions. First, is there non-Fermi liquid behavior
near BCEP in Yb3Pt4? Measurements of the temperature dependence of the
electrical resistivity are expected to be of particular importance in answering
this question. Second, does a Fermi liquid state develop once magnetic
fields suppress antiferromagnetic order? If so, is there a divergence of the
Sommerfeld coefficient γ and the resistivity coefficient A as B → BCEP that
signals the breakdown of this Fermi liquid with the onset of antiferromagnetic
order? Finally, is there any suggestion of electronic delocalization in Yb3Pt4, or
is the coupling between the Yb moments and the conduction electrons always
vanishingly small?

Electrical resistivity ρ, specific heat C, magnetic susceptibility χ, and
magnetizationM measurements were compared to those of similar experiments
on YbRh2Si2, with the intention of providing support for a global phase
diagram that relates these two very different systems.

3.5.1 Field and Temperature Dependent Resistivity

Electrical resistivity has proven to be a very sensitive probe of the
quantum critical fluctuations in other heavy fermion compounds where
antiferromagnetic order can be suppressed to T = 0 [12, 157]. The temperature
dependence of the B = 0 electrical resistivity ρ(T ) in Yb3Pt4 is shown in
fig. 3.12a. ρ(T ) drops monotonically from its room temperature value of 127
µΩ-cm to 35 µΩ-cm at 10 K, confirming that Yb3Pt4 is definitively metallic.
Given the crystal field scheme deduced from specific heat and inelastic neutron
scattering measurements where four doublets are separated by 87 K, 244 K,
and 349 K [123], it is likely that the bulge in ρ(T ) at intermediate temperatures
reflects the depopulation of these crystal field levels with reducing temperature.
The onset of antiferromagnetic order is evident from the sharp drop in ρ(T )
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Figure 3.12: (a) Zero field temperature dependence of the electrical resistivity
ρ(T ) in Yb3Pt4. (b) The temperature dependencies of ρ(T ) measured in
different magnetic fields from 0 T to 4.0 T at low temperatures. The red
arrows indicate the antiferromagnetic transitions at each field B ≤ 1.85 T.
(c) The temperature derivative of the electrical resistivity dρ/dT in different
fixed fields, as indicated. Red arrows indicate values of TN(B), taken
from the maxima in dρ/dT . (d) Field - temperature phase diagram of
Yb3Pt4. The antiferromagnetic ordering temperatures TN(B) extracted from
the temperature(�) and field (N) dependent resistivities are in good agreement
with the phase line determined from specific heat(◦) measurements. Solid
black line is a fit to a mean-field expression.
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at the Néel temperature TN = 2.4 K. Since our primary interest is in the
behavior of ρ(T ) as magnetic fields suppress TN to zero, we have repeated
the measurements of ρ(T ) in different fixed fields B ranging from 0 T to
4 T (fig. 3.12b). As expected, the resistive drop at TN occurs at lower
temperatures with increasing fields, and there is no indication of a resistive
anomaly when B & 2 T. We take TN(B) from the maximum in the temperature
derivative, dρ/dT (fig. 3.12c), and the result is compared in fig. 3.12(d) to the
phase line TN(B) that was previously determined from specific heat, neutron
diffraction, and magnetization measurements [95]. We note that the specific
heat measurements place BCEP near 1.9 T, although the other measurements
find BCEP ≃ 1.8− 1.85 T. The agreement is very good, especially considering
that the experiments were performed on different crystals, and that small
uncertainties in the orientation of the field are inevitable. We will take
BCEP = 1.85± 0.05 T.

Since the phase line is very steep when TN → 0, measurements of the
field dependence of the resistivity at different fixed temperatures are better
suited to exploring this part of the T − B phase diagram. As indicated
in fig. 3.13a, the magnetoresistance ρ(B) has a sharp peak at TN(B), most
prominent for TN ≥ 1 K. At lower temperatures, the peak in ρ(B) evolves
into a broadened step, whose magnitude becomes smaller with decreasing
temperature. No hysteresis was observed between resistivity measurements
obtained with increasing or decreasing fields, even at the lowest temperatures.
The values of TN(B) that are taken from the resistive step have been added
to fig. 3.12(d), and we see that the magnetoresistivity data closely track
the near-vertical phase line TN(B) as it approaches the horizontal axis at
the critical field BCEP = 1.85 T. The width of the field-induced step in
ρ(B) decreases with decreasing temperature, and at the lowest temperatures
it has a width of ≃ 0.2 T. This behavior is reminiscent of the step in
the Yb3Pt4 moment observed in both magnetization M(B) and neutron
diffraction measurements [95]. We previously showed that the step ∆M and
the vertical phase line TN(B) are in agreement with the Clausius-Clapeyron
equation, indicating that antiferromagnetic order in Yb3Pt4 vanishes at a
first order transition or critical endpoint, where TN = 0 and B = BCEP.
We have compared the magnetization step measured at T = 0.2 K to the
magnetoresistivity step measured at 0.1 K in fig. 3.13b, and their resemblance
is striking. This is our first indication that the magnetization controls the
electrical resistivity in Yb3Pt4, a finding that we will develop further below.
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Figure 3.13: (a) Field dependencies of the electrical resistivity ρ measured
at different temperatures from 0.1 K to 3.0 K, as indicated. Red arrows
indicate the antiferromagnetic transitions. (b) Magnetoresistivity ρ (•, left
axis) measured at 0.1 K plotted together with the magnetization (red solid
line, right axis) measured at 0.2 K. Vertical dashed lines delineate the step
like kink around the critical field ∼ 1.85 T.
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3.5.2 Spin Disorder Scattering of Local Moments

The suppression of magnetic order in a heavy fermion compound that has
been driven to a QCP often results in a normal metallic state that is a
Fermi liquid. Here, the electrical resistivity is quadratic in temperature
ρ(T ) = ρ0 + AT 2, and the coefficient A is often enhanced near the QCP,
reflecting the growth of quasiparticle interactions that can culminate in the
divergence of the quasiparticle mass at the QCP itself. Accordingly, we have
plotted the temperature dependent part of the electrical resistivity ρ(T)− ρ0,
measured in different fixed fields, as a function of T 2 in fig. 3.14a. A quadratic
temperature dependence is observed within the antiferromagnetically ordered
state, i.e. for T ≤ TN(B). There is only a small variation in the slopes of
the curves in fig. 3.14a for the fields B ≤ 1.85 T where antiferromagnetic
order is present. To highlight this point, we have plotted the coefficient
A(B) in fig. 3.14b, and within the antiferromagnetic phase A(B) remains
roughly constant. We have attempted to extend the Fermi liquid temperature
dependence to higher fields B ≥ BCEP, but we find that the fit is only valid
over an extremely small range of temperatures T ≤ TFL(B) and the minimum
measurement temperature 0.3 K. While we report A(B) that is derived from
these fits in fig. 3.14b, we feel that there is no convincing evidence that Fermi
liquid behavior can be detected in ρ(T ), once antiferromagnetic order has been
suppressed to zero by either temperature or field.

If the paramagnetic state with B ≥ BCEP is not a Fermi liquid at low
temperatures, then what physical processes are responsible for the electrical
resistivity once antiferromagnetic order is suppressed? The similar field
dependencies of the magnetoresistivity ρ(B) and the magnetization M(B)
displayed in fig. 3.13b suggest that spin disorder scattering may dominate.
To test this idea, we have combined measurements of M(B)(fig. 3.15a),
normalized by MS, which is taken to be the value of M for T = 1.8 K
and B = 3 T, with those of the normalized magnetoresistivity ∆ρ/ρ(B =
0) = (ρ(B) − ρ(B = 0))/ρ(B = 0). The result is presented in fig. 3.15b.
The normalized magnetoresistivity obtained at different fixed temperatures
collapses as a function of the normalized magnetization, provided that
the fields and temperatures of the respective measurements do not place
Yb3Pt4 within the antiferromagnetic phase, whose boundaries are indicated
by arrows in fig. 3.15b. Spin-disorder scattering can be identified by its
power-law relation between ρ(T,B) and M(T,B), where ∆ρ/ρ(B = 0) ∝
(1− (M/MS)

2) [158, 159]. This relationship is confirmed in fig. 3.15c, where a
double logarithmic plot of ∆ρ/ρ(B = 0) is linear with respect to M/MS. The
best fit to the scaling region gives a slope of two, as indicated by the red line.
Our measurements affirm our proposal that fluctuations in the magnetization
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Figure 3.14: (a) The resistivity ρ−ρ0 as a function of T 2 in different magnetic
fields as indicated. Red arrows indicate the antiferromagnetic transitions,
taken from the maxima in dρ/dT . (b) The coefficient of the quadratic
temperature dependence A as a function of magnetic field B. Vertical dashed
line indicates the critical field BCEP.

are the primary agent for scattering quasiparticles over a very wide swath of
the B−T phase diagram, provided that antiferromagnetic order is not present.

3.5.3 Zeeman Splitting of the Ground Doublets

B/T scaling of the Low Temperature Thermal Properties

A simple scaling analysis reveals the nature of the dominant magnetization
fluctuations. Fig. 3.16a shows that the magnetization M collapses when
plotted as a function of B/T , but only when B and T are taken from the
paramagnetic part of the (T,B) phase diagram (fig. 3.12d). Since fig. 3.15
shows that the magnetoresistivity is a proxy for the magnetization, it is not
surprising that it displays B/T scaling too(fig. 3.16b). This scaling fails
within the antiferromagnetic phase T ≤ TN(B), where Fermi liquid behavior
∆ρ = AT 2 is observed. The success of the B/T scaling implies that the
magnetization fluctuations are simply paramagnetic fluctuations among the
crystal field split states of the Yb3+ ion. The crystal field split manifold of
the J = 7/2 Yb3+ ions in rhombohedral symmetry consists of four doublets,
and inelastic neutron scattering and specific heat measurements indicate that
the ground doublet in Yb3Pt4 is separated from the first excited level by
80 − 90 K [75, 123], much larger than the temperature scales probed in
the measurements reported here. Practically speaking, we can safely ignore
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the excited states, and so the field and temperature dependencies of the
magnetization M reflect the two-fold degeneracy of the ground doublet, lifted
by Zeeman splitting in field.

The paramagnetic nature of the magnetic fluctuations also leads to B/T
scaling in the measured specific heat CP. The field dependence of CP is
plotted in fig. 3.17a for different fixed temperatures between 0.7 K and 2.3
K, and at lower temperatures in fig. 3.17b, where the field dependencies of
CP(B) are presented for 1.9 K≥ T ≥ 0.3 K. For each temperature, CP falls
on an apparently universal function of B/T above a characteristic value of
B/T marked by red arrows. Fig. 3.17a shows the fields separating the scaling
and nonscaling parts of the CP(B) curves, and the resulting curve closely
resembles the phase line TN(B) in fig. 3.12d. Like the magnetization M , the
B/T scaling evident in CP betrays an underlying energy spectrum that has
only two states. Accordingly, fig. 3.17a shows that CM is well described in the
paramagnetic phase by a Schottky expression, where the Zeeman splitting of
the states ∆ = gµBB with g = 2.5.

The B/T scaling that we have demonstrated in the field and temperature
dependent resistivity ρ, magnetization M , and specific heat C suggests that
the predominant magnetic fluctuations that are present for T ≥ TN(B), and
in the T = 0 paramagnetic phase where B exceeds the critical value of 1.85
T, are incoherent fluctuations of the Yb moments within their Zeeman split
doublet ground state. Within the accuracy of our measurement, this single
ion behavior extends to TN itself, implying that critical fluctuations play a
negligible role in Yb3Pt4. If this conclusion is correct, then the magnitude
of the gap ∆ between the Zeeman split ground state doublet of the Yb ions
should provide the only energy scale for the paramagnetic part of the Yb3Pt4
phase diagram. The importance of this energy scale near field-driven QCPs
has recently been emphasized [160].

Crossover Behaviors in Magnetic Susceptibility

The Zeeman gap ∆ may be determined, in principle, from analyses of the
magnetization M , resistivity ρ, and specific heat CP. The temperature
derivative of the magnetization ∆M/∆T can be calculated from magnetization
isotherms M(B), measured at temperatures differing by ∆T = 0.05 K
according to −dM/dT ≃ −∆M/∆T = −[(M(T + ∆T,B) − M(T −
∆T,B)]/(2∆T ). This procedure is repeated for a wide range of fields B, and
the result is plotted in fig. 3.18a. We restrict ourselves here to temperatures
T ≥ TN. The field dependence of -∆M/∆T displays a distinct maximum
at a field BM that moves to higher fields with increasing temperature. The
temperatures TM and fields BM of the maxima in −∆B/∆T are plotted in
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fig. 3.19d, where they are shown to be linearly related.
ac magnetic susceptibility measurements provide complementary

information, since χ′
ac is defined as the field derivative of the magnetization,

measured as a function of temperature in different fixed dc fields (fig. 3.18b).
When the dc magnetic fields are small, a sharp ordering anomaly is observed at
TN, which passes out of our experimental temperature window T ≥ 1.8 K for
B ≥ 1 T. In the paramagnetic state at higher fields, χ′

ac also has a maximum
at Tχ′ , which moves to larger temperatures with increasing fields. fig. 3.18
shows that, like Tχ′(B), TM(B) increases linearly with magnetic field, at least
for the limited range of fields where the magnetization and ac susceptibility
measurements overlap. Intriguingly, the peak in χ′

ac is not driven to T = 0 as
B → 0, but instead occurs at ≃ 4.6 K when B = 0.

Inflection Points in the Field Dependent Resistivity

Since the resistivity and the magnetization are related for paramagnetic
Yb3Pt4, it follows that the field derivative of the resistivity dρ/dB will also
have a peak that mirrors that of χ′

ac = dM/dH. The magnetoresistance of
Yb3Pt4 was measured for temperatures T ≥ TN, as shown in fig. 3.19a. The
corresponding field derivative dρ/dB was determined numerically, and it is
plotted in fig. 3.19b. A negative maximum is found for dρ/dB that moves
to larger fields with increased temperature. The fields Bρ and temperatures
Tρ where −dρ/dT has its maximum should correspond to the fields BM and
temperatures TM where −∆M/∆T has its maximum. Fig. 3.19d confirms
that Tρ and TM are identical, within the accuracy of our analyses. The peak
in −dρ/dT broadens markedly with increasingly temperature, and although
the onset of antiferromagnetic order prohibits a direct measurement, its full-
width, half-maximum (FWHM)(fig. 3.19c) extrapolates approximately to zero
as B → 0.

Schottky Effect in the High Temperature Specific Heat

The effect of Zeeman splitting on the ground doublet is most obvious in
measurements of the temperature dependent specific heat CP, carried out
in different fixed fields (fig. 3.20a). We separate CP into two parts: CP =
CM + CPh. CPh is the contribution from the phonons, and we approximate
this term by the specific heat measured in nonmagnetic but isostructural
Lu3Pt4 (fig. 3.20a). CPh is taken to be field independent. CM is the
magnetic and electronic contribution to the specific heat, and we take CM =
γ(B)T+CSchottky. CP−CPh−γT is plotted in fig. 3.20b, and indeed it consists of
a peak that broadens and moves to higher temperatures with increasing field,
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much as we would expect for a Schottky contribution to the specific heat.
Accordingly, we have fit CP − CPh = γ(B)T + CSchottky, where CSchottky is the
Schottky expression for two levels with equal degeneracy, separated by a gap
∆(B). The quality of these fits for fields from 2.25 T to 7 T is demonstrated in
fig. 3.20b. The Sommerfeld coefficient γ(B) is approximately 40 mJ/mol-K2

for B = 0, and the minimal field dependence that is displayed in fig. 3.20c
likely reflects the inherent accuracy of our fits. γ is always small, consistent
with the apparent absence of any Kondo physics in Yb3Pt4, and there is no
evidence for any divergence of γ at BCEP, in agreement with similar results on
the resistivity coefficient A (fig. 3.14b).

Fig. 3.20b shows that CM = CP − γT − CPh is well fitted by the Schottky
expression for fields from 2.25 T to 7 T, and the field dependence of the
temperature scale T∆ = ∆/kB that results from these fits has been added to
fig. 3.19d. As expected, T∆ increases linearly with field. While the temperature
scales TM, Tχ′ , Tρ, and T∆ are not all identical, in each case we find that their
slopes ∆T/∆B ≃ 2.6 K/T (fig. 3.19d), which is also consistent with the value
g = 2.5 found in the scaling of the specific heat at very low temperatures
(fig. 3.17a). It is tempting to believe that all these scales originate with the
Zeeman splitting of the Yb doublet ground state.

3.6 Discussion and Conclusion

Our measurements suggest that Yb3Pt4 is a particularly simple system.
Throughout the paramagnetic phase T ≥ TN and B ≥ BCEP, the magnetic
and electronic specific heat CM(T,B), the magnetization M(T,B), and even
the resistivity ρ(T,B) are all dominated by strong magnetic fluctuations,
where the only characteristic energy scale results from the Zeeman splitting
of an energetically isolated, Yb doublet ground state. These single ion,
paramagnetic fluctuations extend down to TN(B) itself, indicating that critical
fluctuations are always very weak. This may reflect the fact that the Néel
state vanishes at BCEP = 1.85 T in a field-driven critical end point, much
as is found for antiferromagnetic insulators [127, 128, 129]. Quantum critical
fluctuations are still possible, in principle, if this transition is weakly first
order. We speculate that the absence of these quantum critical fluctuations
in Yb3Pt4 may result from an inherent mean-field like character that is
evident in the phase line TN(B), from the B=0 order parameter found in
neutron diffraction measurements [75],and in the appearance of the specific
heat transition itself [95, 96]. The highly localized character of the moments in
Yb3Pt4 prohibits the sorts of quantum critical fluctuations between states with
different Fermi surface volumes that were reported in YbRh2Si2, suggesting
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that they may be a larger part of the quantum critical fluctuations of the
more hybridized heavy fermions than was previously appreciated.

Yb3Pt4 is a metal, and the near-constancy of the Sommerfeld coefficient for
fields both larger and smaller than BCEP suggests that there is a Fermi liquid
state that underlies both the antiferromagnetic and paramagnetic phases in
Yb3Pt4. The T 2 temperature dependence of the electrical resistivity is only
observed when antiferromagnetic order disables the paramagnetic fluctuations,
suppressing the spin-disorder scattering that otherwise obscures the Fermi
liquid component of the resistivity. The smallness of the Sommerfeld coefficient
indicates that the exchange coupling of the conduction electrons to the Yb
moments is weak, and that the quasiparticle mass enhancement is minimal.

It is fair to say that the Fermi liquid in Yb3Pt4 simply coexists with the Yb
moments, and that it is almost unaffected by the onset of antiferromagnetic
order. Yb3Pt4 seems to have much more in common with elemental rare earth
metals like Gd or Dy, where magnetic order occurs well above the extremely
low or even vanishing temperature scales where Kondo physics could play a
role, than heavy fermions like YbRh2Si2, where the Kondo effect is largely
complete by the time magnetic order is established.

Our measurements provide definitive answers to the questions that we
posed earlier.
• Is non-Fermi liquid behavior found near the TN = 0, B = BCEP = 1.85 T
critical endpoint? Given the first order character of this transition, quantum
critical fluctuations are weak, at best. We have shown that paramagnetic
fluctuations of individual Yb moments dominate all measured quantities down
to the antiferromagnetic phase line itself. non-Fermi liquid behaviors such as
∆ρ = BT 1+δ are entirely absent near BCEP.
•Is a heavy Fermi liquid found once magnetic fields suppress antiferromagnetic
order? A Fermi liquid underlies both the antiferromagnetic and paramagnetic
phases of Yb3Pt4, but the Sommerfeld coefficient is small in both, signalling
a small quasiparticle mass enhancement. There is no sign of Fermi liquid
breakdown in paramagnetic Yb3Pt4, signalled in other systems by divergencies
of the Sommerfeld coefficient γ or the resistivity coefficient A as the field
approaches BCEP from above.
•Is there any indication of electronic delocalization in Yb3Pt4? Yb3Pt4 appears
to be an extreme case of moment localization. Outside the range of fields and
temperatures where antiferromagnetic order is stable, the electrical resistivity,
magnetization, and specific heat all display the B/T scaling that is expected
for decoupled and fully incoherent magnetic moments, where the spacing
between the underlying energy levels increases linearly with magnetic field.
The ubiquity of B/T scaling suggests that these levels originate with the well-
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separated doublet ground state in Yb3Pt4, which is Zeeman split in field.
This single ion behavior dominates in the absence of antiferromagnetic order,
suggesting that the Yb moments are always localized, seemingly ruling out the
possibility of electronic delocalization and an expansion of the Fermi surface
at TN, as is found in systems like YbRh2Si2.

It is interesting to consider how the rather minimal physics of localized
Yb3Pt4 might be connected to the rich physics that is found in heavy fermions
with bona fide QCPs. Is there a generalized T = 0 phase diagram that can
accommodate both? We present a phase diagram in fig. 3.21 that proposes
just such a connection. Since this proposed phase diagram is based largely
on experimental results in Yb3Pt4, further experimental investigation will be
required to establish whether it may have more universal application. One
axis of this phase diagram is inspired by the Doniach phase diagram [36],
and represents the degree of hybridization Γ between the moment-bearing
f-electrons and conduction electrons. Applied pressure increases Γ for Ce
compounds, but decreases Γ for Yb compounds [161, 162]. The Doniach
argument associates magnetic order arising from the Rudermann-Kittel-
Kasuya-Yosida (RKKY) interaction with weak hybridization, although the
increasing influence of Kondo physics ultimately leads to its suppression at a
QCP for a critical value of Γ = ΓQCP. The second axis of this T = 0 phase
diagram is magnetic field, which generally suppresses antiferromagnetic order.
Antiferromagnetic order is stable at T = 0 when B ≤ BN(Γ) and for B = 0,
when Γ ≤ ΓQCP.

The persistence of field-temperature scaling for compounds that are tuned
to the vicinity of the (B = 0, Γ = ΓQCP) QCP suggests that the phase line
BN(Γ) is second order for an appreciable range of the hybridization parameter
Γ, terminating for B = 0 at Γ = ΓQCP [121]. YbRh2Si2 forms very close
to ΓQCP, and the fragility of its antiferromagnetic state is evident from both
the tiny ordered moment [163] and by the small amounts of doping that are
required to drive TN → 0 [121, 164]. Larger chemical pressures are responsible
for the absence of antiferromagnetic order in YbIr2Si2, which can be restored
by the subsequent application of hydrostatic pressure [165]. High pressures are
expected to stabilize antiferromagnetic order at progressively higher fields, an
effect that is reproduced by Co-doping in Yb(Rh1−x,Cox)2Si2 [122]. A different
behavior is found in compounds like Yb3Pt4, where the exchange coupling Γ is
very small (Γ → 0) and the field-driven phase transition TN = 0 is first order.
The magnetic fields required to suppress antiferromagnetic order to TN = 0
form a line of T = 0 transitions that emanate from a tricritical point with
ΓTCP that separates this first order part of the BN(Γ) phase line with Γ → 0
from the continuous regime with Γ → ΓQCP [166, 167]. There is some initial
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T = 0 (b). The antiferromagnetic phase line BN(Γ) has a continuous region
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(dashed line) that terminates at Γ → 0, BCEP, separated by a tricritical
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II and III, having localized Yb moments, from Regions I, IV, and V, where
there are differing degrees of electronic localization (see text). The line BM(Γ)
separates regions IV (light mass Fermi liquid) from region V (heavy mass
Fermi liquid). It is not known where BM(Γ) intersects the antiferromagnetic
phase line BN(Γ) (dashed line). The evolution of the T = 0 states with
increasing Γ (decreasing pressure) from local moment AF magnets (Yb3Pt4) to
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evidence that the antiferromagnetic ground state is achieved via a first-order
transition in Co-doped YbRh2Si2 [168], suggesting that it may be possible to
span this tricritical point with an appropriate combination of magnetic fields
and chemical pressure.

Very different types of electronic behaviors are found in the different
regimes of this T = 0 phase diagram. All these f -electron based compounds
start with the same high temperature state, where spatially localized
moments fluctuate independently and are essentially decoupled from the
conduction electrons. With lowered temperature, magnetic order and Kondo
compensation compete to determine the final T = 0 state. In systems like
Yb3Pt4, TN is larger than TK, and so the ground state is magnetic order of
spatially localized moments, where the related f -electrons or holes are excluded
from the Fermi surface. Magnetic fields suppress the T = 0 antiferromagnetic
order in Yb3Pt4, and the robust B/T scaling in the paramagnetic regime
indicates that the localized moments persist, creating a paramagnetic state
that is stable even for T = 0. In YbRh2Si2, TK is much larger than TN. Here,
the Yb-based f -holes and the conduction electrons are strongly entangled,
with both contributing to the Fermi surface of the T = 0, B = 0 ordered
state. Here, too, magnetic fields suppress antiferromagnetic order [155], but
the transition in YbRh2Si2 is accompanied by an expansion of the Fermi surface
that produces a heavy Fermi liquid [31, 160]. A second transition or crossover
is found at BM ≃ 10 T [169], which is accompanied by a broadened step in the
magnetization and a step like reduction in the Sommerfeld constant, suggesting
the formation of a new Fermi liquid with substantially reduced quasiparticle
mass and interactions [170]. High pressure measurements on YbRh2Si2 find
that BM decreases with increasing pressure (decreasing Γ) as indicated in
fig. 3.21. This general trend has been reported as well in a number of different
heavy fermion and mixed valence compounds [171]. The exact nature of
the transition or crossover at BM remains uncertain. de Haas - van Alphen
measurements [172] support the proposal that a Lifshitz transition occurs
in YbRh2Si2 at ≃10 T, where the majority spin sheet of the Fermi surface
vanishes to produce a more weakly correlated Fermi liquid [173]. Electronic
structure calculations suggest instead a gradual crossover that is driven by
Zeeman splitting of the quasiparticle states, a process that redistributes
spectral weight among bands with different masses, while leaving the number
of states contained by the Fermi surface unchanged between the light and
heavy Fermi liquid states [174]. Neither scenario suggests that there is an
actual localization of the f -holes at BM ≃ 10 T.

The complete destruction of the heavy fermion state is projected to occur
at a much higher field BC [173], resulting in a high field state where the
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Yb moments and the conduction electrons are decoupled. The definitive
absence of heavy fermion character in Yb3Pt4, where the Yb moments and
the conduction electrons are nearly decoupled, prompts our suggestion that a
smaller field is required to suppress the heavy fermion state as Γ decreases,
ultimately producing a B = 0 state with Γ ≤ ΓLOC where moments are always
localized. We note that such a transition has been observed in YbRh2Si2,
where a pressure P ≃ 10 GPa causes the B = 0 ordering transition become
first order [175], and the ordered Yb moment increases dramatically from
0.02 µB/Yb at 1 bar [163] to ∼ 1.9µB/Yb at 16.5 GPa [175]. The latter
value is similar to the B = 0 moment found in Yb3Pt4, which is in turn
close to the expected value for a Yb doublet ground state when TK → 0,
signalling that the Yb moments have become largely decoupled from the
conduction electrons. These data suggest that BC(Γ) intersects the B = 0
axis at ΓLOC ≤ ΓTCP. Understanding how the BC(Γ) line passes through
the antiferromagnetic phase and connects to a B = 0 moment localization
transition will require challenging new measurements that use high pressures
or chemical pressure to drive localization, with the subsequent addition of
magnetic fields to drive the resulting T = 0 transition towards the BN(Γ)
phase line itself.
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Chapter 4

Quantum Criticality in the
Family of Compounds
Ln(Ln=Y, Lu, Yb)Fe2Al10

Quantum criticality has been studied in various systems, however, it is rare
that the observed scaling can be unified with a critical free energy, or where
the resulting exponents form the basis for bona fide QC universality classes.
This chapter presents the magnetic properties including specific heat C,
magnetizationM and electrical resistivity ρ of the 3d-electron based compounds
YFe2Al10 , LuFe2Al10 and YbFe2Al10 . non Fermi Liquid (nFL) behaviors with
strong divergencies in magnetic susceptibility (χ ∼ T−γ, γ ≈ 1.4) and specific
heat (CM/T ∼ −logT ) were observed in YFe2Al10 , indicating that it may
be located very close to a QCP at B = 0 and T = 0. Universal scaling
behaviors of magnetic susceptibility dχ/dT = B−1.4ϕ(T/B0.6) and specific heat
∆CM/T = φ(T/B0.6) were seen over more than three decades of T/B0.6. A
detailed scaling analysis based on the critical free energy found that the spatial
dimension d is equal to the dynamic exponent z at this QCP. Further study
suggests that this may not be a magnetic QCP, and different possibilities for
the nature of this QCP are also discussed.
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4.1 Introduction

Observation of universality and critical scaling behaviors is a big triumph in
understanding classic phase transitions [1, 2, 3, 4]. Since the correlation length
goes to infinity at the critical point, the critical properties of the system are
independent of the dynamical microscopic details. It was known from the
scaling theory that every critical point is characterized by a universal class with
a set of critical scaling exponents [1, 2, 3, 4]. Different from the classical phase
transitions, a quantum phase transition refers to a continuous transition that
occurs at zero temperature, where both the correlation length and time scales
diverge [24]. Thus in addition to the length scale, a characteristic energy scale
of the system will also vanish at such a T = 0 QCP [24]. A direct consequence
is that the dynamical components play an important role in quantum phase
transitions, and quantum critical scaling differs from its classical counterpart
in that the spatial dimension d is replaced by an effective dimension d + z,
where z is the dynamical critical exponent [11, 24]. Quantum criticality has
been studied in various systems [10, 11, 12, 21, 32], however it is rare that
the observed scaling can be unified with a critical free energy, assuming the
existence of hyperscaling [20, 32].

We report here our experimental evidence that YFe2Al10 is one of the
few materials of this class. Disorder effects are not decisive in single crystals
of this compound, which are stoichiometric with a high degree of crystalline
perfection [78, 210]. The magnetism derives entirely from the 3d-electrons
contributed by the Fe, all of which appear to be delocalized as T → 0. All
the measured quantities in YFe2Al10 are dominated by the QC fluctuations
associated with a B = 0, T = 0 QCP, although there is no indication of
any static order above 0.05 K [78]. The complete range of magnetic and
thermal measurements are accessible in this system, holding the promise of a
full description of the quantum criticality.

4.1.1 Experimental Details

Faceted single crystals of the compound YFe2Al10 with typical dimensions
about 3 mm were synthesized using aluminum (Al) metal flux [78, 210]. High
precision measurements of the magnetization M and the ac susceptibility χ′

were carried out using a Quantum Design Magnetic Phenomena Measurement
System (MPMS). Measurements of the specific heat CP were carried out in
a Quantum Design Physical Property Measurement System (PPMS) using
the relaxation method. The magnetic and electronic part of the specific
heat CM was determined from the measured specific heat CP by subtracting
specific heat measurements obtained from a single crystal of YRu2Al10, after
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Figure 4.1: Left: A block shaped YFe2Al10 single crystal grow from the Al
flux with the principal axis a and b as indicated. Right: Crystal structure of
YFe2Al10 . The Fe atoms are sitting in the center of polyhedra like cages made
from Al and Y atoms. [78, 210]

scaling the temperature by the ratio of the Debye temperatures θD where
θD( YFe2Al10 )=1.03 θD(YRu2Al10) [78]. The resistivity was measured in the
PPMS using the AC transport option on the 3He probe. The MCE ratio
was extracted indirectly from the magnetic susceptibility and specific heat
measurements.

4.1.2 Crystal Structure of YFe2Al10

Single crystal x-ray diffraction measurements confirm previous reports [219]
that YFe2Al10 forms in an orthorhombic YbFe2Al10 type structure with the
space group Cmcm (63). In this structure, each Fe atom is surrounded by ten
Al and two Y atoms, and the crystal structure can be viewed as connected
polyhedral cages made of Y and Al atoms with Fe atoms sitting in the center,
as shown in fig. 4.1. These cages are connected in the ac plane by sharing edges,
while they were linked by a shared Al atom at the corner along the b direction.
The lattice parameters for YFe2Al10 are a = 8.9654(2)Å, b = 10.1578(3)Å,

c = 9.0110(3)Å , and V = 820.6Å
3
. We obtained a refinement factor

R1=0.0164 [78, 210] that permits no more than 1% variation in site occupancy,
ruling out the considerable Fe/Al site interchange characteristic of the Fe-
rich members of the YFexAl12−x family [221]. Direct inspection by optical
microscopy of polished cross-sections of YFe2Al10 crystals found no evidence for
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contaminant phases, beyond small inclusions of Al flux. Energy dispersive x-
ray (EDX) analysis found that there were no variations in the nominal Y-Fe-Al
stoichiometry at different locations in the crystals, within the 1-2 % accuracy
of EDX [78]. These direct investigations, as well as the overall uniformity
of experimental results among different crystals from different batches argue
strongly that our YFe2Al10 crystals are of excellent quality.

4.2 Magnetic Properties of YFe2Al10

4.2.1 Magnetic susceptibility

The intrinsically magnetic character of YFe2Al10 is evident from measurements
of the field and temperature dependent magnetic susceptibility. Shown in
fig. 4.2(a) is the temperature dependent ac magnetic susceptibility measured
in an ac field Bac = 4.17 Oe applied both along and perpendicular to the
crystal b direction [78]. The magnetic susceptibility continues to increase with
decreasing temperature, and a strong divergence with χ ∼ T−1.4 was observed
for the B⊥b direction at low temperatures. However, for the field in the
B∥b direction, the magnetic susceptibility is less divergent, and trend toward
saturation was observed below about 10 K.

For temperatures above 30 K, the ac magnetic susceptibility was fitted to
the Curie-Weiss expression χac = χ0+C/(T − θ), where χ0 is the temperature
independent background, θ is the Curie-Weiss temperature, and C is the
Curie constant, as shown in fig. 4.2(b) [78]. The fitting gives similar effective
moments for fields along different directions, with magnitudes 0.41µB/Fe (B∥b)
and 0.45µB/Fe (B⊥b), and Curie-Weiss temperature -24 K (B∥b) and -28 K
(B⊥b) [78]. However, the temperature independent background χ0 is very
different for different field directions with χ0 ∼ 2.5× 10−4emu/mol.Fe for B∥b
, which is almost 100 times larger than χ0 for B⊥b. The Curie law can be
extended to temperatures as high as 750 K (inset of fig. 4.2(b)) [78]. The
negative Curie-Weiss temperature indicates antiferromagnetic interactions,
although no magnetic order was observed down to 1.8 K in the magnetic
susceptibility measurements. The fluctuation moments determined from the
Curie law are much smaller than the ones expected from Fe local moments.
One possibility that would explain the origin of the tiny effective moments
is that the measured magnetic susceptibility comes from some kind of local
moment magnetic impurities.

However, we will show that the impurity scenario does not account for
many of the observations. One important aspect is the observed strong
anisotropy of the magnetic susceptibility measured in different field directions.
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Figure 4.3: (a) Magnetization M as a function of field B⊥b, at indicated
temperatures. (b) Data from (a), plotted as functions of B/T . Solid line is
the S = 1/2 Brillouin function, with a scaled magnitude. [78]

Shown in fig. 4.2(a) (inset) is the ratio of the ac magnetic susceptibilities
(χ′

B⊥b/χ
′
B∥b) for field along the two different directions. We can see that χ′

B⊥b

is almost one order larger than χ′
B∥b at low temperatures (χ′

B⊥b/χ
′
B∥b ∼ 10 at

T = 1.8K) [78]. However, with increasing temperature, χ′
B⊥b becomes much

weaker and χ′
B⊥b/χ

′
B∥b ∼ 0.2 at temperature around 300 K. This particular

anisotropy is very hard to understand with scenarios of contamination from
local moment impurities, which are more likely to give isotropic behaviors.
In addition, for impurity models, magnetic susceptibility with fields along the
divergent direction (B⊥b) should always have larger magnitude over the whole
temperature range, and not just at low temperatures as we find here.

Another very important observation comes from the scaling behaviors
of the magnetic field dependent magnetization. Shown in fig. 4.3(a) is the
magnetization measured with the field perpendicular to the b direction at
different temperatures from 2 K to 30 K [78]. The magnetization M is linear
with field B at higher temperatures. However, at lower temperatures, the
nonlinearity becomes more and more significant at small fields. Assuming the
magnetization measured here comes from isolated paramagnetic impurities,
the overall field and temperature dependent behaviors should obey the
Brillouin function. We have plotted the isotherms of the field dependent
magnetization M as functions of B/T in fig. 4.3(b) [78]. The red solid line
is the scaled Brillouin function assuming S = 1/2. The magnetization curves
do not collapse to a universal function of B/T , and the overall curve can
hardly be explained by the Brillouin function. These observations rule out the
possibility that contamination from localized moment impurities is responsible
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for the measured magnetization. The strong divergence for field perpendicular
to the b direction and the strong anisotropy indicates that the low temperature
magnetic susceptibility may be dominated by critical fluctuations residing in
the ac plane [78].

4.2.2 Specific heat

Further evidence for these critical fluctuations comes from the low-temperature
specific heat C. Shown in fig. 4.4a is the measured specific heat of YFe2Al10 in
zero field from 0.4 K up to 30 K [78]. To separate the contributions from
phonons, the specific heat of the nonmagnetic but isostructural compound
YRu2Al10 was measured [78]. Considering that 4d Ru atoms are heavier than
the 3d iron (Fe) atoms, the Debye temperatures of these two compounds are
slightly different. However, the overall trends of the two specific heat are
very similar. By correcting these slight differences in the Debye temperature
θD(YFe2Al10) = 1.03θD(YRu2Al10), the specific heat of YRu2Al10 was rescaled
as shown in fig. 4.4a [78]. This re-scaled specific heat was then used as the
estimated phonon contribution, and was subtracted from the as measured
YFe2Al10 data. The magnetic specific heat CM/T that was isolated by this
procedure is plotted in fig. 4.4b [78]. For temperature above about 10 K, the
magnetic specific heat CM/T is almost constant, indicating Fermi liquid (FL)
behavior with the Sommerfeld coefficient γ ≃ 9 mJ/mol.Fe.K2. Comparing to
the one found in the nonmagnetic compound YRu2Al10(γ ≃ 3 mJ/mol.Ru.K2),
we conclude that the effective quasiparticle mass is significantly enhanced in
the FL state of YFe2Al10 [78].

Below 10 K, the Sommerfeld coefficient of YFe2Al10 increases monotonically
to about 50 mJ/mol.Fe.K2 around 0.1 K. As shown in fig. 4.5, the zero field
specific heat follows a power law as CM/T ∼ T−0.5 below about 10 K [78].
However, a kink was observed at ∼ 0.4 K, and the measured zero field specific
heat deviates from this power law below that temperature. A weak maximum
was also seen at about 0.1 K, which may come from the effect of the nuclear
Schottky effect of the 27Al nucleus. No clear evidence of any magnetic ordering
was observed down to the lowest temperature.

We have considered that there may be some contribution in the as-
measured zero field specific heat other than the singular part caused by
the critical fluctuations. As was already indicated from the field dependent
magnetization, the critical fluctuations are suppressed in high fields. The
specific heat measured in a sufficiently high field could be used as the non-
critical background. We have measured CM(T ) for B = 4 T, and subtracted
it from the B = 0 specific heat CP to isolate ∆CM/T = CP/T − CP (B =
4T )/T (fig. 4.5). The kink at 0.4 K disappears in the semi-log plot, and at lower
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temperatures, the subtracted specific heat can be described as a logarithmic
divergence ∆CM/T ∼ −logT .

We are not trying to argue which of the two expressions for the divergent
specific heat is better. The power law describes the high temperature
data better, while the logarithmic divergence is more suited to the lowest
temperature data. We will see below that the logarithmic divergence is more
consistent with the scaling behaviors than the power law.

4.3 Quantum Critical Scaling in YFe2Al10

4.3.1 Scaling of the Magnetic Susceptibility

Since YFe2Al10 may be located close to a QCP at B = 0, magnetic field
is a tuning parameter that suppresses the critical fluctuations and tunes the
system away from the quantum critical region, just as been observed in the
heavy fermion materials [10, 11, 12, 21, 32]. Thus, it will be very interesting
to know if there is any universal behavior that may link the critical behaviors
observed in the magnetization, and specific heat measurements. A detailed
study of field tuned magnetic behaviors in YFe2Al10 is presented here.

The field and temperature dependencies of the magnetic susceptibility
demonstrate that the most divergent magnetic response is found at the lowest
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is the same fit as shown above in fig.1a. (c) Field dependence of the magnetic
susceptibility χ′ at different temperatures as indicated. The red line indicates
the magnetic susceptibility decreases as a function of χ′(B) ∼ B−0.95 at 1.8
K. All the measurements here were performed with magnetic fields along the
a axis.
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fields and temperatures. Strong anisotropy was observed with magnetic field
along different principal crystal axes. The most divergent direction we found
is with field along the crystal a direction. The magnetization data shown in
fig. 4.3 were obtained in fields in the ac plane (B⊥b), and all the magnetization
data shown here and below are with field along the most divergent crystal a
axis. Due to some weak anisotropy in the ac plane, the fitted critical exponents
γ for (B∥a) are slightly different from those with B⊥b. The temperature
dependence of the ac susceptibility χ′ = dM/dB was measured for different
fixed fields B∥a-axis up to 2.0 T (fig. 4.6a). At the lowest fields, χ′ increases
monotonically and approaches the power law divergence of χ′ ∼ T−1.4, with the
measured ac field Bac = 4.17 Oe. With increasing field, there is a saturation of
χ′ as T →0, signalling that the critical divergence is increasingly suppressed by
the magnetic field to create a new Fermi liquid state where the magnetization
depends only weakly on temperature. The dc susceptibility χ =M/B displays
very similar behavior as shown in fig. 4.6b. The strong temperature divergence
at low fields is significantly suppressed with increasing field, and the magnetic
susceptibility flattens at low temperatures when field is as high as B = 6.0 T.

The magnetic field dependence of χ′ at different temperatures is presented
for different temperatures in fig. 4.6c. dM/dB decreases strongly with
increasing field at the lowest measured temperature 1.8 K, and a strong
divergence with χ′ ∼ B−0.95 was found in the high field region. The power law
dependencies found in both the field and temperature dependent magnetic
susceptibilities indicate that high temperatures have the similar qualitative
effect on dM/dB as high fields. In both cases, the divergencies that are
observed at the lowest fields and temperatures are suppressed in favor of
high field and high temperature states where the susceptibility is insensitive
to either field or temperature, much like the Pauli susceptibility found in a
normal Fermi liquid. Fig. 4.6 demonstrates that the dc and ac susceptibilities
in YFe2Al10 are increasingly divergent with decreasing field and temperature.
This is consistent with the assumption that this system may be approaching
the QCP that occurs at or near B = 0 and T = 0. Our measurements of
the magnetic susceptibility reveal that field and temperature play dual roles
in suppressing the quantum critical behavior that is evident in YFe2Al10 ,
suggesting field-temperature scaling.

Here we start from the scaling of the temperature derivative of the
magnetic susceptibility. One advantage of this is that it omits the noncritical
contribution from the temperature independent susceptibility χ0. On the other
hand, this analysis involves numerical differentiation of the magnetization
data, demanding excellent quality data. For dc magnetization measurements,
high quality data were taken in the field as large as 6.0 T. The ac magnetic
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susceptibility becomes too noisy to be measured reliably in fields higher than
2.0 T. The final scaling of the ac susceptibility was performed in fields up to
1.0 T.

Figure 4.7 shows that both ac magnetic susceptibility χ′ = dM/dB and dc
magnetic susceptibility χ =M/B collapse in a similar way as

− dχ

dT
B1.4 = ϕ(

T

B0.6
) (4.1)

with the same scaling exponents. The overall scaling is excellent extending over
more than three decades of the scaling variable T/B0.6, for temperatures 1.8
K≤ T ≤ 30 K and for fields up to 6.0 T in the dc susceptibility and 1.0 T in the
ac susceptibility. A broad maximum was observed in both of the scaled ac and
dc magnetic susceptibilities, which is the crossover from the quantum critical
region where T ≫ B to the Fermi liquid like state where T ≪ B. Shown in
fig. 4.7a and fig. 4.7c are the log-log plot of the scaling curves, and in fig. 4.7b
and fig. 4.7d the semi-log plots, emphasizing the quality of the scaling in the
Fermi liquid region (small T/B0.6). The red solid lines are the fits based on a
scaling function that will be explained in section 4.6. Also it has been argued
in [176, 177] that, for single impurity models, the scaling dimension ∆ must
be less than one for the scaling variable B/T∆. The scaling function we found
above with ∆ = 1/0.6 ≃ 1.6 clearly violates any impurity theory, and suggests
that nonlocal critical fluctuations are important in YFe2Al10 .

4.3.2 Scaling of the Specific Heat

The specific heat CM is also dominated by the same quantum critical
fluctuations at low temperatures and fields, where the B=0 specific heat CM/T
increases strongly below 10 K (fig. 4.5). A comparison of double log and semi-
log plots indicates that either a power law CM/T ∼ T−0.5, as we previously
reported [78], or a logarithmic temperature dependence CM/T ∼ −logT
describe the data equally well. As we will see below, the latter is consistent
with the field and temperature scaling, while the former is not.

Like the magnetic susceptibility, magnetic fields suppress the B = 0
divergence in the specific heat, and lead to a low temperature saturation of
CM/T (fig. 4.8a). This suggests that a heavy Fermi liquid state is found at
high fields, as seen in f electron heavy fermion compounds [10, 12, 21, 32].
We will use this universal behavior to propose a specific function of the free
energy in the next section. We have shown that the magnetic susceptibility
scales as T/B0.6. Since magnetization M is related to the entropy S through
the Maxwell relation dM/dT = dS/dB, the specific heat should also scale
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Figure 4.7: Scaling observed for the dc and ac magnetic susceptibility over
several decades of the scaling variable T/B0.6. The red line is the fitting based
on the proposed scaling function of the magnetization, as explained in the
later sections. (a), and (c) are the log-log plot of the dc and ac magnetic
susceptibility, while (b) and (d) are the semi-log plot of the same data in (a)
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magnetic fields (0 T6 B 6 7.0 T) perpendicular to the b axis. (b)Scaling of the
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T< B 6 7 T. Red line is the fitting based on the proposed scaling function of
the free energy as described in the later sections. (c) Field dependent specific
heat measured in different temperature from 0.5 K to 5 K. The arrows indicates
crossovers from the quantum critical region to the high field Fermi liquid state.
(d) A logarithmic decrease of the specific heat was observed at 0.55 K in high
fields from about 1 T to 9 T.
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as a function of T/B0.6. An excellent scaling collapse is indeed found for
the specific heat. As shown in fig. 4.8b, the field dependent specific heat
∆CM/T = CM(B, T )/T − CM(0, T )/T performed in different fixed fields B
describe a universal function of the same scaling variable T/B0.6 as

∆CM

T
= φ(

T

B0.6
). (4.2)

This scaling is just as we expected from the scaling of the susceptibility,
described above in equation 4.1. From the scaling curve, we can see that
∆CM/T approaches a constant value for T/B0.6 ≫ 1, implying that the Fermi
liquid state emerges from the quantum critical fluctuations in the high field
low temperature region when kBT ≪ gµBB. Between these two limiting
regions, crossover behaviors as the broad maximum in the specific heat are
observed (fig. 4.8b and c), similar to what we see in the magnetic susceptibility.
In the field dependent CM/T (fig. 4.8c), the peak position of these maxima
increase with increasing temperature (as marked by the arrows), and the peak
shape itself becomes more broad. These peak positions follow the same field
dependence found in the magnetic susceptibility measurements, as expected
from the scaling. At our lowest temperature, 0.55 K, we see that there is
a logarithmic field divergence CM/T ∼ −logB, for about 1.0 T≤ B ≤ 9 T
(fig. 4.8d). This is also as expected from the scaling analysis that we will
discuss in section 4.6.

4.3.3 Field Temperature Phase Diagram

Although no static order has been observed in YFe2Al10 on the measured
temperature and field ranges, we do see crossover behaviors in different
measurements. We have defined here the crossover values T ∗(B) as the field
dependent temperatures where dM/dB, dM/dT and C/T vs B are maximized.
Although the absolute values of T ∗(B) determined from different experiments
are different, they all follow the same field and temperature relation, that
is T ∗ ∝ B0.6, just as expected from the scaling variable x = T/B0.6. The
crossover lines determined from the ac susceptibility dM/dB and specific heat
C/T vs B are re-scaled to the T ∗(B) value from the dc magnetization dM/dT
and plotted together in fig. 4.9. Fermi liquid behavior like ∆CM/T ≃ γ, where
γ ≃ const, and χ ≃ const is found when T ≪ T ∗(B), i.e. for low temperatures
and high fields. Conversely, quantum critical fluctuations dominate in low
fields when T ≫ T ∗(B), and at increasingly high temperatures as the field is
increased. The excellent scaling collapses found from susceptibility and specific
heat experiments are valid over the complete range of fields and temperatures
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Figure 4.9: Field temperature (B − T ) phase diagram of YFe2Al10 with field
B along the a direction. The crossover lines are defined through the peak
position of CM(B, T )/T (�), dc magnetization −dM/dT (N), and ac magnetic
susceptibility χ′ (�).

represented in fig. 4.9, suggesting that a crossover function might be found that
would connect the Fermi liquid and quantum critical regimes of YFe2Al10 .

Up to now, we have shown that all the dc, ac magnetic susceptibility and
specific heat data display well behaved scaling over several decades of the
scaling variable T/B0.6, supporting the idea that the QCP is located at T = 0,
and B = 0 (fig. 4.9). The observed scaling functions of equation 4.1 and 4.2
are re-examined below using a consistent quantum critical scaling analysis.

4.4 The Scaling Analysis in YFe2Al10

4.4.1 Free Energy and Magnetization

Experimentally the specific heat and magnetic susceptibility are two
independent measurements, but they are related to the same free energy,
where χ′ = −∂2F/∂B2, and C/T = −∂2F/∂T 2. The scaling observed in both
magnetic susceptibility and specific heat implies that the free energy which is
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responsible to the the low temperature properties should also be scalable.
We assume the generic form for the singular part of the free energy F as

introduced in chapter 1 (equation 1.24),

F (B, T ) = T
d+z
z fF (

B

T yb/z
) = B

d+z
yb f̃F (

T

Bz/yb
). (4.3)

where yb is the scaling exponent related to the field B. With this assumption
for the free energy, we can now express all the other thermodynamic properties
as functions of T and B. The magnetization M = ∂F/∂B, is determined by
taking the derivative of the free energy (4.3),

M = B(d+z)/yb−1fM

(
T

Bz/yb

)
, (4.4)

where the scaling function fM is related to the original scaling function of the
free energy f̃F by

fM(x) = (d+ z)/ybf̃F (x)− z/ybxf̃
′
F (x).

It follows that the scaling function for the dc magnetic susceptibility can be
written as

χdc =M/B =M = B(d+z)/yb−2fM

(
T

Bz/yb

)
. (4.5)

The measured dc susceptibility contains a very small temperature independent
component χ0 that is not critical. By taking the temperature derivative of both
sides of equation 4.5, we can isolate the temperature dependent part of χdc,
which has the scaling behavior

dχdc/dT = Bd/yb−2ψ(
T

Bz/yb
), (4.6)

Here, the scaling function ψ(x) is related to f̃F (x) as

ψ(x) = f ′
M(x),

where f ′
M(x) = ∂fM(x)/∂x is the derivative respect to the variable x =

T/Bz/yb . Similarly, we find that the scaling form of the ac magnetic
susceptibility is

χac = dM/dB = B(d+z)/yb−2fχ(
T

Bz/yb
), (4.7)
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with
fχ(x) = ((d+ z)/yb − 1)fM(x)− z/ybxf

′
M(x),

and also

dχac/dT = Bd/yb−2ϕ(
T

Bz/yb
), (4.8)

where ϕ(x) is related to fχ(x) as

ϕ(x) = f ′
χ(x).

These scaling expressions can be directly tested using measurements of the
field and temperature dependencies of the ac and dc magnetic susceptibilities,
as shown in fig. 4.7. Both the dc and ac magnetic susceptibilities undergo
excellent scaling collapses over almost four decades of the scaling parameter
T/Bz/yb . By comparing the scaled data in fig. 4.7 directly to relations 4.6 and
4.8, we determined that the scaling exponents (d + z)/z and yb/z have the
values 

d/yb − 2 ≃ −1.4

z/yb ≃ 0.59

This gives 
d/yb ≃ z/yb ≃ 0.59

d ≃ z
(4.9)

Relation 4.9 indicates the spatial dimension d is equal to the dynamical
dimension z in YFe2Al10 .

Now we derive the limiting critical behaviors using relation 4.9. For the
T → 0 field dependent magnetic susceptibility, equation 4.7 implies that

χac → B−((d+z)/yb−2)fχ(0)

in the T → 0 limit. Taking fχ(0) ∼ const, we have

χac ∼ B−((d+z)/yb−2) = B−0.82.

This value is just a little smaller than the one that we observed at 1.8 K,
where χac ∼ B−0.95. However, we can see from fig. 4.6c that there is still
some temperature dependence in high fields. This means that 1.8 K is not low
enough temperature to fully reach the Fermi liquid state. The scaling analysis
suggests that this critical exponent should approach 0.82 if we could measure
the field dependent magnetic susceptibility at much lower temperatures.
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We rewrite equation 4.8 as

χac = dM/dB =M = T (d+z)/z−2yb/zϕ̃(
B

T yb/z
). (4.10)

and for the temperature dependence of χ(T ) at B → 0,

χac → T (d+z)/z−2yb/zϕ̃(0).

Assuming that ϕ̃(0) has a constant value, then the B = 0 temperature
divergence is found as

χac ∝ T (d+z)/z−2yb/z = T−γ.

Using the relation that d = z, and d/yb = 0.59, we find that

γ = 2yb/z − (d+ z)/z = 1.4 (4.11)

This is just what we observed in fig. 4.6a.

4.4.2 Scaling Function and Crossover Behaviors

Two observations prompted our adoption in YFe2Al10 of a free energy that
can be written as a function of x = T/Bz/yb . First, we observed that, for
x≫ 1 where T ≫ B, the magnetization diverges as power law with decreasing
temperature, and this implies that fM(x) ∼ x−γ. However, in the other limit
for x≪ 1 where T ≪ B, the loss of temperature dependence in the magnetic
susceptibility and specific heat CM/T suggests that the system becomes Fermi
liquid like, where fM(x) should be expandable as a power of x2. Inspired by
the scaling function proposed for β-YbAlB4 in [20], we write the asymptotic
behaviors of fM(x) as follows:

fM(x) ∝
{
x−γ T ≫ B, non-Fermi liquid
const +O(x2) T ≪ B, Fermi liquid.

(4.12)

We will show that a specific function

fM(x) = c(a2 + x2)−γ/2 (4.13)

reproduces the limiting behaviors that we expect for large and small x, and as
well leads to other functions that describe the specific heat and magnetization
for intermediate values of x. We begin by writing the magnetization in terms
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of this scaling function:

M = B(d+z)/yb−1c(a2 + x2)−γ/2. (4.14)

The corresponding scaling functions for dχdc/dT , and dχac/dT are easily
determined, and they are given by

dχdc

dT
= Bd/yb−2ψ(x) = −cγBd/yb−2x(a2 + x2)−γ/2−1, (4.15)

and

dχac

dT
= Bd/yb−2ϕ(x) = −cγBd/yb−2x(a2 + x2)−γ/2−2(x2 − a2). (4.16)

Here, a and c are the fitting parameters, and γ is the temperature dependent
exponent of the magnetic susceptibility, as defined above. These scaling
functions are compared to the scaled ac and dc magnetic susceptibilities in
fig. 4.7 (red line). The agreement is excellent, and the fitting parameters are
a = 4.6, c = 1300, and γ = 1.4.

As we have discussed above, the broad maximum observed in fig. 4.7
indicates the crossover from the quantum critical region to the heavy Fermi
liquid state in high fields. Here, we are going to show that the crossover
behaviors are quantitatively explained by the scaling function 4.14. The
position of the peak in the magnetization dM/dT curve can be computed
from the scaling function as

d

dT

(
dM

dT

)
= 0,

which gives that
T ∗
dc/B

z/yb = x =
√
a2/(γ + 1) = 3. (4.17)

A similar relation can also be worked out for the ac magnetic susceptibility
χac, although the overall quality of the data is less good than that of χdc,
especially above 2 T. Unlike the dc magnetic susceptibility, the scaling curve
of the ac magnetic susceptibility indicates that dχac/dT approaches zero when
x = a, and for smaller x, dχac/dT becomes negative. This simply means that
a peak appears in the ac susceptibility itself, and the peak positions would
shift in fields like the scaling parameter:

T ∗
ac/B

z/yb = x = a = 4.6. (4.18)

The peak and its field dependence is presented in fig. 4.10. The peak positions
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Figure 4.10: (a)Plots of −dM/dT as a function of T in different fixed fields
B. There are peaks in the temperature dependencies of dM/dT (a) and also
in χac=dM/dH (b) that shift to higher temperatures with increasing field, as
indicated by the arrows. Inset: Peak position T ∗

dc plotted as a function of B
follows the scaling function 4.17 with a = 4.6, and γ = 1.4. (b) Plots of the
temperature dependent ac magnetic susceptibility χac = dM/dB in different
magnetic fields B. Inset: Peak position T ∗

ac plotted as a function of B follows
the scaling function 4.18 with a = 4.6.

extracted from −dM/dT and from the ac magnetic susceptibility χac agree
well with the predictions of equation 4.17 and 4.18, as indicated by the red
lines in the insets of fig. 4.10a and fig. 4.10b.

4.4.3 Field Dependent Specific Heat

Our adoption of expressions 4.3, 4.12, and 4.13 for the free energy and
magnetization lead to a satisfactory description of the magnetization data
over a wide range of fields and temperatures. In principle, if this assumption
of the singular part of the free energy indeed captures the quantum criticality of
YFe2Al10, it should also lead to scaling of other measurable thermal quantities,
such as the specific heat C(B, T ).

Let us start from the free energy, considering only the temperature
derivatives. We can write the entropy S as

S(B, T ) = −∂F
∂T

= −B(d+z)/yb−z/ybf ′
F (x). (4.19)
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By taking another temperature derivative of the entropy S, we obtain the
specific heat as

C(B, T )

T
=
∂S

∂T
= −B(d+z)/yb−2z/ybf ′′

F (x).

Since B = T yb/z, we rewrite the function above as

C(B, T )/T = T (d+z)/z−2g̃F (x̃). (4.20)

We have defined the scaling function g̃F (x̃) = −Trf ′′
F (x), where x = T/Bz/yb ,

and x̃ = B/T yb/z. Here, we need to be particularly careful regarding the
treatment of the zero field contribution from the free energy F . Since the
magnetic susceptibility comes from the field derivative of the free energy, any
field independent part will disappear when the field derivatives are taken in
equation 4.4. In contrast, the specific heat is the temperature derivative of the
free energy, and it will have contributions from both the zero field part and
the field dependent parts of the free energy.

We can expand the scaling function 4.20 around B = 0 thus x̃ = 0 as

C(x̃)

T
= T (d+z)/z−2g̃F (x̃) = T (d+z)/z−2(g̃F (0)+ax̃g̃

′
F (x̃)+ax̃

2g̃′′F (x̃)+. . .) (4.21)

= T (d+z)/z−2(g̃F (0) + φ̃(x̃)) (4.22)

In this way, it is possible to separate the zero field contribution

C(B = 0, T )/T = T (d+z)/z−2g̃F (0) (4.23)

from the entire specific heat C(B, T )/T , while generating a new scaling
function φ̃(x̃) that describes only the field-dependent part of the specific heat
C

C(B, T )/T − C(0, T )/T = T (d+z)/z−2φ̃(x̃). (4.24)

Now, the critical exponent that is related to the divergence of the specific heat
α = 2− (d+ z)/z ∼ 0, so that using the results in relation 4.9, leads to

C(B, T )/T − C(0, T )/T = φ̃(x̃). (4.25)

This suggests a particularly simple scaling of the field dependent specific heat
for B ̸= 0 as

∆CM/T = C(B, T )/T − C(0, T )/T = φ(
T

Bz/yb
). (4.26)
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This is just as was experimentally observed, as shown in fig.4.8 for fields as
large as 7.0 T and for temperatures up to 10 K.

The scaling of the specific heat also follows from the Maxwell relation,
which relates the entropy S to magnetization M directly as

∂S(B, T )

∂B
=
∂M(B, T )

∂T
. (4.27)

This implies an underlying relationship between the scaling functions that were
separately obtained for the specific heat and the magnetization. By integrating
both sides relative to the magnetic field B, one has that∫ B

0

∂S(B, T )

∂B
dB =

∫ B

0

∂M(B, T )

∂T
dB. (4.28)

Since∫ B

0

∂S(B, T )

∂B
dB = S(B, T )− S(0, T ) =

∫ T

0

(
C(B, T )

T
− C(0, T )

T
)dT, (4.29)

and by inserting this in equation 4.28 before taking the temperature derivative
on both sides, we find that

∆CM

T
=
C(B, T )

T
− C(0, T )

T
=

∂2

∂T 2

∫ B

0

M(B, T )dB, (4.30)

giving

∆CM

T
=

∂2

∂T 2

∫ B

0

B(2−α)z/yb−1fM

(
T

Bz/yb

)
dB = φ

(
T

Bz/yb

)
. (4.31)

by inserting in equation 4.4. This scaling is the same as equation 4.26, but
now the Maxwell relation allows us to relate the scaling function φ(x) directly
to the function fM(x) without knowing the specific form of the free energy.
If we take the temperature derivatives before carrying out the integral, then
equation above can be simplified as follows:

∆CM

T
= φ

(
T

Bz/yb

)
=

∫ B

0

B−1f ′′
M(x)dB, (4.32)

where

f ′′
M(x) =

∂2

∂x2
fM(x) = −cγ(a2 + x2)−γ/2−1[1− (γ + 2)

x2

x2 + a2
].
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The integral of the above function has no analytic form for γ = 1.4.
Nonetheless, we can still obtain its limiting behaviors. For the Fermi liquid
limit with kBT ≪ gµBB, where x = T/Bz/yb ≪ 1, equation 4.32 can be
simplified to the following:

∆CM

T
≃ −cγ

∫ B

0

B−1[a2 − (γ/2 + 1)x2]dB ≃ −ca2γlogB +O(T 2). (4.33)

This indicates that the specific heat measured at fixed low temperatures
decreases logarithmically in high fields. This was experimentally demonstrated
in fig. 4.8d. The second term of the order O(T 2) suggests that the temperature
dependent part is very weak for T ≪ B, confirming that Fermi liquid behavior
is regained in high fields at low temperatures.

Now, let’s turn to the non-Fermi liquid limit as B ≪ T , with x≫ 1. Here
equation 4.32 becomes

∆CM

T
≃ cγ(γ + 1)

∫ B

0

B−1x−γ−2dB w cγ(γ + 1)B2T−γ. (4.34)

Equation 4.34 suggests an increase of the specific heat in small fields before the
logarithmic decrease in higher fields. Fig. 4.8c shows that the implied peak
in the field dependent CM/T is indeed experimentally observed, confirming
the crossover between the non-Fermi liquid behavior at low fields and high
temperatures, and the Fermi liquid at high fields and low temperatures.

4.4.4 Zero Field Specific Heat

Up to now, the scaling seems to explain our experimental observations quite
well. However, remember that we have separated the zero field part of the
specific heat from the field dependent part of the specific heat. It is natural
to ask whether our choice of free energy and the exponents α, γ and yb/z that
we determined from the scaling of the magnetization and the field-dependent
part of the specific heat implies a particular form for the zero field specific
heat. The answer is of course yes.

We have written the B = 0 specific heat C(0, T ) in terms of the scaling
function fC :

C(0, T )/T = T−αfC(0) = T 0fC(0). (4.35)

Based on the scaling we have described above, α ≃ 0. Thus the logarithmic
temperature divergence of C(0, T )/T is more consistent with the experimental
data CM(0, T ) than the power law divergence. With this assumption, we are
now in a position to propose a more specific function for the free energy as
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follows:

F (B, T ) = T 2−αfF (B/T
y
b /z) = F (0, T ) +

∫ B

0

M(B, T )dB

= T 2logT 2 + T 2−αf(B/T yb/z) (4.36)

Since magnetization is the field derivative of the free energy, only the second
term of the free energy in 4.36 contributes to the magnetization. This
term gives all the scaling of the susceptibility we showed before, and it also
dominates the field dependence of the specific heat. However, for the zero field
properties, the first term of the free energy dominates, although it does not
contribute to the magnetic susceptibility at all.

Below in Table 4.1, we have summarized the temperature and field
dependent behaviors of the measured properties in different limits as T ≫ B,
and T ≪ B. We note that function 4.13 does provide an excellent description
of the measured magnetic susceptibility and the field dependent specific heat,
not only their limiting behaviors, but for intermediate values of the scaling
parameter T/Bz/yb as well. We concur with the proposal in [20], which suggests
the non-Fermi liquid quantum critical point can be connected to a Fermi liquid
by the magnetic fields.

Table 4.1: The temperature and field dependent behaviors of the
magnetizationM , magnetic susceptibility χ, and the specific heat CM(B, T )/T
in different limits as T ≫ B, and T ≪ B (keeping only the leading terms).
Here d = z, z/yb ≃ 0.59, and γ ≃ 1.4 as defined above.

M χ CM(B, T )/T

T ≫ B, nFL BT−γ T−γ −logT +B2T−γ

T ≪ B, FL B(d+z)/yb−1 B(d+z)/yb−2 −logB

4.4.5 Magnetocaloric effect (MCE)

An important observation from the scaling analysis of YFe2Al10 is that the
spatial dimension d is equal to the dynamic scaling exponent z. The direct
consequence of this is the logarithmic divergence of the zero field specific heat.
Although this relation may not necessarily be found for other other quantum
critical systems, logarithmic divergencies are reported in many heavy fermion
systems when they are tuned to QCPs [10, 19, 20]. It has been argued that
the universal behaviors around different QCPs can be established through
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Figure 4.11: The calculated magnetocaloric effect Γ/B as a function of
temperature at different fixed fields. Since the power law is much stronger
than the logarithmic divergence, the overall magnetocaloric effect is divergent
at low temperatures.

the Grüneisen ratio [93, 94]. For field tuned magnetic systems, the magnetic
Grüneisen ratio is just the magnetocaloric effect (MCE) which diverges as [93]

Γcr =
−(dM/dT )/T

C/T
∝ 1

T 1/νz
=

1

T yb/z
. (4.37)

Since we have a QCP at B = 0 in YFe2Al10 , it is not practical to measure the
zero field static magnetization M , and calculate Γcr using the equation above.
However, it is possible to measure the magnetic susceptibility χ = dM/dB in
the B → 0 limit, and thus the field divided MCE diverges as

Γ/B =
−(d(M/B)/dT )/T

C(0, T )/T
∝ T−γ−2

logT
=
T−2yb/z

logT
∼ T−3.4/logT. (4.38)

Here, we have used the relation νbz = z/yb = 0.6 found in 4.9. Since the power
law divergence is much stronger than logarithmic, the overall magnetocaloric
effect is expected to be divergent at low temperatures. This is consistent
with the experimental data, where the MCE is calculated indirectly from the
measured ac magnetic susceptibility χac with Bac = 4.17 Oe and the measured
specific heatC(0, T )/T in zero fields (fig. 4.11).
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On inspection of table 1.2, there does not seem to be a single model that
describes the divergence of the MCE found for YFe2Al10 , and the value
of νbz = 0.6 does not match any known AF-QCP (z = 2, νb = 1/2) or
FM-QCP (z = 3, νb = 1/2) models [24, 25]. Since no long-ranged order
is observed in YFe2Al10 down to the lowest measured temperature 0.05 K,
there is at present no way to determine the nature of the QCP. Experiments
that use compositional variations to drive YFe2Al10 through the QCP into the
ordered phase would be most useful for resolving this issue. LuFe2Al10 and
YbFe2Al10 are compounds from the same formula as YFe2Al10 , and their
properties are studied in the next sections.

4.4.6 Thermal Expansion

Our collaborators in the group of M. Brando in the Max Planck Institute
for Chemical Physics in Dresden have also measured the thermal expansion
of YFe2Al10 in zero field [178]. Assuming that pressure P is another tuning
parameter, we could add a similar scaling term to the free energy as

F (B, T ) = T 2logT 2 +B(d+z)/yb f̃B(T/B
z/yb) + P (d+z)/yp f̃P (T/P

z/yp). (4.39)

Here yp is the scaling dimension relate to the presssure P . The singularity of
the thermal expansion is

α =
1

V

∂V

∂T
=

1

V

∂2F

∂P∂T
∝ T (d−yp)/z, (4.40)

and thus
α/T ∝ T (d−yp)/z−1 = T−yp/z. (4.41)

Here, we have again used the relation d = z for YFe2Al10 .
Shown in fig. 4.12 is the temperature dependent thermal expansion α

of YFe2Al10 measured in different fields along the crystal a direction. A
weak upturn was observed at low temperatures, and no significant field
dependencies were observed. The log-log plot of the thermal expansivity
divided by temperature α/T was plotted in fig. 4.13, and divergent behaviors
were observed below about 1 K. Power law fits were made for three different
fields, and the fitted exponents are 1.25 for B = 0 T, 1.55 for B = 0.5 T,
and 1.65 for B = 7 T. The slight differences are likely to reflect experimental
errors, and we have averaged these three values to 1.5 ± 0.2 as indicated in
fig. 4.13b. If we assume that YFe2Al10 is located just at the critical point with
P = 0, we could then compare this experimentally observed divergent thermal
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Figure 4.12: As measured thermal expansivity α of YFe2Al10 as function of
temperature in different magnetic fields. A small upturn was observed at low
temperatures, but otherwise α is field independent. (Figure is courtesy of
Manuel Brando [178].)
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YFe2Al10 measured in magnetic fields as indicated. (b) Log-log plot of the
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Brando [178].)
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expansion
α/T ∼ T−1.5 (4.42)

to equation 4.41, and we find that

yp/z = 1.5

for YFe2Al10 . The divergence of the thermal expansion indicates that it may
be interesting to pursue some pressure experiments in the future.

We mention that no significant field dependencies were observed in the
thermal expansivity α. Since there are no terms that couple field and pressure
in the free energy 4.39, the only property that could be affected by field B is
the conjugate magnetization M . This is similar to what was observed in the
organic compounds κ-(BEDT-TTF)2X [50, 179]. With field B, the magnetic
properties of the ordered insulating states may change, but the MIT phase
line and the critical end point are not affected at all in this system.

4.5 Magnetic Properties of LuFe2Al10

4.5.1 Magnetization

Temperature Dependent Magnetization

Shown in fig. 4.14a is the temperature dependent dc magnetic susceptibility
of LuFe2Al10 measured in fields along the three principal crystal axes from
1.8 K to 300 K. Similar to YFe2Al10 , anisotropy was observed among the
measurements with fields in different directions. The most divergent direction
is still the a axis. We also noticed that although χB∥a > χB∥c > χB∥b at low
temperatures, it turns out that χB∥a < χB∥c < χB∥b at high temperatures.
Another significant feature is that power law behavior with χB∥a ∼ T−γ(γ =
0.57) was observed at low temperatures as indicated in fig. 4.14b. This power
law divergence was suppressed with increasing fields, and a Fermi liquid
like state with temperature independent susceptibility at low temperatures
was observed. Although the overall trend of the magnetic susceptibility
in LuFe2Al10 is similar to what we observed in YFe2Al10 , two things are
different. First, the critical exponent from the magnetic susceptibility in
LuFe2Al10 is γ = 0.57, which is much smaller than the one we observed in
YFe2Al10 where γ = 1.4 for B∥a. Second, the magnitude of the magnetic
susceptibility at low temperatures in LuFe2Al10 is much smaller than the
one we measured in YFe2Al10 . These results indicate that if YFe2Al10 is
very close to a QCP, then LuFe2Al10 may be somewhat farther from the
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same QCP. The similarities between the observed behaviors suggest that the
magnetic properties in LuFe2Al10 may be dominated by the same type of
critical fluctuations.

Field Dependent Magnetization

We have measured the field dependent dc magnetization of LuFe2Al10 at
different temperatures up to 100 K (fig. 4.15a). The highest field (B = 7
T) magnetization at 1.8 K is about 0.004µB/Fe. If we assume the measured
magnetization comes from some Fe local moments related to vacancies or
other defects, then the estimated ratio for such Fe moments must less than
0.004/5 ≈ 0.08% (for Fe3+: µeff = 5.9µB, for Fe

2+: µeff = 5.4µB). This gives
the upper limit for any impurity or site disorder scenarios.

There is additional evidence that this measured magnetization cannot come
from local moment impurities. We have already seen that even at the lowest
measured temperature 1.8 K, the magnetization curve did not saturate below
7.0 T. We re-plotted the same data in fig. 4.15a as function of B/T , as shown in
fig. 4.15b. The isotherms of the field dependent magnetization do not saturate
or collapse on to each other at all. The red solid line is the scaled Brillouin
function, assuming localized moments with spin S = 1/2. The measured
magnetization curves can not be described by the Brillouin function. This
observation rules out the possibility that contamination by localized moments
is responsible for the measured magnetization. Similar to what we found in
YFe2Al10 , this suggests that interactions are also important in LuFe2Al10 .

Scaling of the Magnetic Susceptibility

We try to understand the magnetic susceptibility in LuFe2Al10 using the
critical scaling analysis. As we have shown earlier in YFe2Al10 , where scalings
of the magnetic susceptibility χ as functions of T/B0.6

−dχ

dT
B1.4 = ϕ(

T

B0.6
)

were observed in different fields and temperatures. We have tried the
same scaling in LuFe2Al10 for the temperature derivative of the dc magnetic
susceptibility χdc = M/B at temperatures from 1.8 K to 30 K in fields up
to 6.0 T as functions of the scaling variable T/B0.6. Note that the very
small magnitude of χac = dM/dB in YFe2Al10 limits our analysis to the dc
susceptibility χdc = M/B. However, as shown in fig. 4.16, the measured
magnetic susceptibility curves do not undergo a scaling collapse, and the
scaling function shown above does not describes the data well at all. So
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Figure 4.14: (a)Temperature dependent dc magnetic susceptibility χdc =M/B
of LuFe2Al10 measured in 4.0 T with field along the three principal crystal axes
as indicated. (b) Temperature dependence of the dc magnetic susceptibility
χdc = M/B in magnetic fields along the a axis from 0.1 T to 6.0 T. The
magnetic susceptibility is most divergent with fields along the a direction,
where a power law behavior χdc ∼ T−0.57 is found, as indicated by the red
lines.
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does this suggest that the critical fluctuations in LuFe2Al10 are different from
those that we have seen in YFe2Al10 ? Since the magnetic properties of
LuFe2Al10 resemble those of YFe2Al10 , we still have reason to believe that
these two materials may be linked to the same QCP. Then why does the same
scaling fail in LuFe2Al10 ?

The answer is as following. The observed scaling variable T/B0.6

determined by z/yb ≃ 0.6 in YFe2Al10 is not necessarily valid for LuFe2Al10 .
To find the corresponding value of z/yb for LuFe2Al10 , we can start from the
exponent γ of the temperature divergent magnetic susceptibility. We know
from the definition of γ that in LuFe2Al10

γ = 2yb/z − (d+ z)/z = 0.57

different from γ = 1.4 in YFe2Al10 . Since the spatial dimension d and the
dynamical exponent z are determined by the nature of the QCP itself at
B = 0, and they are not field dependent, it is thus reasonable to take d = z in
LuFe2Al10 as in YFe2Al10 . In this way, the different value of γ in LuFe2Al10 is
caused by a different value of z/yb, where

z

yb
=

2

0.57 + (d+ z)/z
≃ 0.78.

The scaling analysis we demonstrated in YFe2Al10 still applies, and the scaling
function for LuFe2Al10 now becomes

dχ

dT
= Bd/yb−2ψ(

T

Bz/yb
) ⇒ dχ

dT
= B−1.22ψ(

T

B0.78
). (4.43)

This new scaling of the dc magnetic susceptibility of LuFe2Al10 is plotted in
fig. 4.17. Both the log-log and semi-log plots show well behaved scaling for
temperatures from 1.8 K to 30 K in fields up to 6.0 T. The red solid line is
the fit using the same function that are proposed earlier

dχdc

dT
= −cγBd/yb−2x(a2 + x2)−γ/2−1,

with modified fitting parameter a = 1.5, and c = 9, where γ = 0.57, x =
T/Bz/yb = T/B0.78. Similar to the scaling curve observed in YFe2Al10 , a broad
maximum in dχ/dT was observed, which indicates the crossover behavior from
the low field (T ≫ B) quantum critical region to the high field (kBT ≪ gµBB)
Fermi liquid state. The position of this crossover is determined by the fitting
parameter a, and its value is smaller than the one we found for YFe2Al10 .
We also noticed that the fitting parameter c here in LuFe2Al10 is much smaller
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than the value in the fitting of YFe2Al10 , where c ≃ 1300. This means that the
overall magnetic susceptibility in LuFe2Al10 is about two orders of magnitude
weaker than that of YFe2Al10 , suggesting LuFe2Al10 may be located much
farther away from the QCP than YFe2Al10 .

Despite the differences in the values of the fitting parameters, the overall
scaling behaviors of YFe2Al10 and LuFe2Al10 can be explained in the same
way. More importantly, the relation between the spatial dimension d and the
dynamical scaling exponent z

d = z

is likely valid. Since this relation is not dependent on the tuning parameter
field B, it may represent the intrinsic nature of the QCP that governs the low
temperature properties of YFe2Al10 and LuFe2Al10 .

4.5.2 Specific Heat

A direct consequence of the relation d = z is that the temperature dependent
specific heat should follow:

C/T = ∂2F/∂T 2 ∼ T d/z−1 = T 0,

and the temperature divergence of the zero field specific heat can be at most
logarithmic. As was shown in fig. 4.18, the specific heat of LuFe2Al10 in zero
field does indicate a logarithmic divergence below about 3 K. This small upturn
was suppressed in high fields, and finally the expected Fermi liquid state was
reached in fields as large as 9.0 T, where approximately constant values of C/T
were observed below about 2 K. Compared to the specific heat in YFe2Al10 ,
the magnitude of the divergence in specific heat in LuFe2Al10 is much weaker.

4.6 Magnetic Properties of YbFe2Al10

In the above sections, we have discussed the magnetic properties of the
materials YFe2Al10 , and LuFe2Al10 . Both of their properties can be described
by critical scaling functions. Based on the scaling analyses, we conclude that
LuFe2Al10 is further away from the critical point than YFe2Al10 . It is thus
worthwhile to study a third isostructural compound to trace the trend of
quantum criticality in this family of compounds.

It was reported that YbFe2Al10 is also located close to the QCP, where
non-Fermi liquid behaviors have been observed in polycrystalline samples [180,
181]. Our studies here are performed on YbFe2Al10 single crystal samples, and
different behaviors were observed.
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Figure 4.17: Log-log plot (a) and semi-log plot (b) of the scaling curve of the
dc magnetic susceptibility χdc =M/B at temperatures from 1.8 K to 30 K in
fields up to 6.0 T as function of the scaling variable T/B0.78. The red line is
the fitting as explained in the text.
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to 9 T. The red line implies the logarithmic temperature dependence.

4.6.1 Magnetization

Shown in fig. 4.19 is the temperature dependent magnetization of YbFe2Al10
measured in 1.0 T with the field along the crystal a axis. The dc magnetic
susceptibility first decreases with increasing temperature, and a small upturn
was observed at low temperatures. With increasing temperature, the dc
magnetization starts to increase at about 50 K, and a broad maximum was
then observed, centered around 410 K. This maximum has been identified as a
characteristic feature for mixed-valence materials, and the maximum position
provide an approximate temperature scale Tsf for the spin excitations [182,
183]. This kind of valence fluctuation behavior is usually observed in rare
earth based compounds, where the 4f level is located very close to the Fermi
energy [182, 183]. For YbFe2Al10 , the Yb moments fluctuate between the
non-magnetic Yb2+ (4f 14) ground state and the magnetic Yb3+ (4f 13) excited
state where the total angular momentum J = 7/2, with effective moment
µeff ≃ 4.5µB. Assuming the excitation energy between these two states is
Eexc, the measured susceptibility could be expressed as [182, 183]

χ(T ) =
C ∗ p(T )
T + Tsf

+ χ0, (4.44)
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Figure 4.19: Temperature dependent magnetization of YbFe2Al10 with field
1.0 T along the crystal a axis. A broad maximum was observed around 410
K. The red line is the fit as explained in the text.

where p(T ) is the fractional occupancy of the excited magnetic Yb3+ (4f 13)
state, with

p(T ) =
8

8 + exp(Eexc/(T + Tsf ))
. (4.45)

Here, C is the Curie constant, which is equal to 2.59 for Yb3+ (µeff = 4.54),
χ0 is the temperature independent susceptibility, Tsf is the spin fluctuation
temperature, which characterizes the broadening of the 4f electron level
induced by the hybridization between the conduction electrons. The red line
shown in fig. 4.19 is a typical fit based on expression 4.44 with the fitting
parameters Eexc = 1448.6 K, Tsf = 298.2 K, and χ0 = 5.0× 10−6emu/mol.Yb.
Based on this fitting, we estimate that the effective Yb moments are about
µeff ≃ 0.3µB at temperatures below 10 K, making only a very small
contribution to the magnetic properties of YbFe2Al10 . The weak upturn in
the magnetic susceptibility at low temperatures is too weak to be fitted with
the power law, and it is unclear whether it is intrinsic or if it may from some
sort of magnetic contamination.
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0 T and 2 T with field along the crystal a axis.

4.6.2 Specific Heat

The as measured specific heat of YbFe2Al10 is shown in fig. 4.20. A logarithmic
divergence has been observed in [180, 181] on polycrystalline samples, and it
has been claimed that YbFe2Al10 may be close to an antiferromagnetic (AF)
QCP. However, no strong divergence was observed in our B = 0 specific heat
on YFe2Al10 single crystal samples. A weak upturn was seen below about 0.8
K in the temperature dependent C/T curve, which was further suppressed in
an applied field of about 2.0 T along the crystal a direction. C/T is almost
constant at low temperatures in fields, indicating a Fermi liquid state with the
Sommerfeld coefficient γ ∼ 18 mJ/mol.Fe.K2.

Based on the magnetization and specific heat measurements, we conclude
that YbFe2Al10 is a Yb-based mixed-valence compound. No significant critical
or non-Fermi liquid behaviors were observed, and we consider that YbFe2Al10 is
very far away from the QCP in the phase space that is jointly inhabited by
the compounds YFe2Al10 and LuFe2Al10 .
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4.7 Comparing YFe2Al10 , LuFe2Al10 , and

YbFe2Al10

In the above sections, we have discussed the magnetic properties of YFe2Al10 ,
LuFe2Al10 , and YbFe2Al10 . Here, we summarize the main properties of
these three materials, and discuss these observations in the larger context
of quantum critical systems, to have a more complete understanding of this
family of compounds.

4.7.1 Magnetization

Plotted in fig. 4.21 are the temperature dependent magnetic susceptibilities
of YFe2Al10 , LuFe2Al10 and YbFe2Al10 with fields along the crystal a axes.
YFe2Al10 has the strongest divergence (χ ∼ T−1.4), and the magnitude of
the magnetic susceptibility in YFe2Al10 is almost two orders higher than that
observed in LuFe2Al10 . Despite the greatly reduced magnitude, the overall
behavior of the magnetic susceptibility in LuFe2Al10 is very similar to that
in YFe2Al10 , and a power law like behavior with χ ∼ T−0.57 was observed
at low temperatures. The overall magnetic susceptibility in YbFe2Al10 is
almost temperature independent in the log-log plot, with a broad maximum
at 410 K indicating valence fluctuations. Although YbFe2Al10 is the only
member of these three compounds that has magnetic rare earth (Yb) ions,
the magnitude of the magnetic susceptibility in YbFe2Al10 is still more than
one order of magnitude smaller than the one in YFe2Al10 at low temperatures.
This is consistent with our discussion above that YbFe2Al10 is a mixed valence
compound, and the Yb ions are essentially nonmagnetic as T → 0.

4.7.2 Specific Heat

Shown in fig. 4.22 are the specific heats of YFe2Al10 , LuFe2Al10 , and
YbFe2Al10 in zero fields. From fig. 4.22, we can see that the magnitude
of the low temperature specific heat goes as C/TYFe2Al10 > C/TYbFe2Al10 >
C/TLuFe2Al10 . Like the magnetic susceptibility, the specific heat of YbFe2Al10 is
nearly temperature independent at low temperatures, indicating that
interactions in YbFe2Al10 are very weak, and that YbFe2Al10 should be
considered as a simple metal with minimal mass enhancement. These overall
behaviors are consistent with the magnetic susceptibility measurements shown
in fig. 4.21, where YFe2Al10 has the strongest fluctuations, and so is located
closest to the QCP, while LuFe2Al10 is a little further away from this QCP,
and YbFe2Al10 is so far from the QCP, that it appears to have no quantum
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Figure 4.21: Temperature dependent magnetic susceptibility of YFe2Al10 ,
LuFe2Al10 and YbFe2Al10 with field along the crystal a axis. YFe2Al10 has the
strongest divergence at the whole temperature range comparing to LuFe2Al10
and YbFe2Al10.
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Figure 4.22: Plot of the temperature dependent zero field specific heat of
YFe2Al10 , LuFe2Al10 and YbFe2Al10 as indicated.

critical behaviors at all.

4.7.3 Resistivity

Shown in fig. 4.23 is the plot of the B = 0 resistivity of the three materials
YFe2Al10 , LuFe2Al10 , and YbFe2Al10 from 0.4 K to 300 K. YFe2Al10 has the
highest value of the residual resistivity (ρ0 ≃ 75µΩ cm at 0.4 K). In addition, a
small upturn was observed at low temperatures. However, YbFe2Al10 has the
lowest residual resistivity (ρ0 ≃ 5µΩ cm at 0.4 K), and no upturn was observed
down to 0.4 K. The resistivity of LuFe2Al10 is in between the observed values
of YFe2Al10 and YbFe2Al10 . On the basis of these resistivity data, one may
suspect that YFe2Al10 may not be a good metal, and hypothetically this could
reflect bad sample quality. However, we argue here that the upturn behaviors
seen in YFe2Al10 resistivity is likely to be intrinsic and should be considered
to be the consequence of the dominant critical fluctuations.

Different samples give different ratios of R300K/R0.4K, which is a
conventional measure of sample quality in metals. This differences could be
compensated by rescaling the magnitude of the different measured resistivities.
As shown in fig. 4.23a, the measured ρ(T ) for LuFe2Al10 and YbFe2Al10 can
be scaled to closely resemble that of YFe2Al10 from ∼ 40− 300 K (fig. 4.23b).
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Figure 4.23: (a) Temperature dependent resistivity of YFe2Al10 , LuFe2Al10
and YbFe2Al10 measured in zero field from 0.4 K up to 300 K. (b) As measured
resistivity of YFe2Al10 , and the scaled resistivity of LuFe2Al10 and YbFe2Al10
according to YFe2Al10 . All the three curves behave in the same way from
300 K down to about 40 K, where upturns were seen in YFe2Al10 . Inset: An
expanded view of the resistivity upturn at low temperatures.

Figure 4.24: (a) As-measured electrical resistivity ρ(T ) for YFe2Al10 (•) and
scaled resistivity of YbFe2Al10 (◦), comparing with data taken with a 9 T
magnetic field oriented both parallel to the a and b axes (as indicated). Red
dashed lines indicate fits to the Kondo expression described in the text. (b)
Field dependent electrical resistivity ρ(T ) for YFe2Al10 measured at 0.5 K for
both B∥a, and B∥b directions, as indicated. [78]
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All three of these scaled resistivity curves behave in almost exactly same way
at high temperatures. However, below 40 K, the resistivity in YFe2Al10 ,
LuFe2Al10 and YbFe2Al10 become different from each other, as seen from
the expanded view of the low temperatures in fig. 4.23b. The resistivity of
YbFe2Al10 decreases monotonically with decreasing temperature, and it is
almost temperature independent below about 10 K. This is just as expected
in mixed valence systems like YbFe2Al10 , where the Yb moments are almost
fully compensated at low temperatures. The resistivity in LuFe2Al10 is slightly
different from that of YbFe2Al10 , showing a weak upturn below about 10
K. This weak upturn becomes stronger in YFe2Al10 , and the resistivity in
YFe2Al10 clearly increases with decreasing temperature below 40 K. If we
assume this kind of increase at low temperature resistivity is due to the Kondo
effect caused by rare earth local moments, we could estimate the total change
of resistivity ∆ρ(T ) = ρ(T )YFe2Al10 − ρ(T )YbFe2Al10 that provides the low-
temperature upturn in YFe2Al10 using the measured resistivity of isoelectronic
and isostructural YFe2Al10 compound as background. This low temperature
upturn was fitted with Kondo the expression [184], where

ρ = ρ0

(
1− ln(T/TK)

[(ln(T/TK))2 + π2S(S + 1)]1/2

)
(4.46)

A good fitting was observed for the B = 0 data with the Kondo temperature
TK = 20 ± 1 K in fig. 4.24a. We have also investigated the anisotropy
with magnetic fields parallel to both the a and b axes on ρ(T ). As shown
in fig. 4.24b, and the magnitude of the upturn resistivity is decreased with
increasing field. Substantial anisotropy is observed when a 9 T field is applied
parallel to the a and b axes. The anisotropic Kondo effect has been observed in
the system (La, Ce)B6, where there is an electric quadrupole moment related
to the rare earth Ce ions [185]. However, there are a few things that are
different in the field dependent magnetoresistivity of YFe2Al10 . First, the
transverse magnetoresistance (B⊥I) was observed to be stronger than the
longitudinal magnetoresistance (B∥I) in the system (La,Ce)B6, which is in
contrast to our observation here in YFe2Al10 . Second, the relative difference
of the magnetoresistivity

∆ρ⊥∥/(ρ(0)− ρ0) = (ρ⊥(T )− ρ∥(T )/(ρ(0)− ρ0)

amounts up to ∼ 8% for (La,Ce)B6 [185]. However, this anisotropic
magnetoresistivity is up to ∆ρ⊥∥/(ρ(0)− ρ0) = (74.3− 71.94)/(75.1− 70.4) ≃
50% for B = 9 T in YFe2Al10 , which is much higher than the effect that one
would expect from the anisotropic angular momentum of a small number of
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rare earth impurities. Third, the negative magnetoresistivity is expected to
be isotropic in the high field limit. Accordingly, no difference was observed
in the magnetoresistance of (La,Ce)B6 when B ≥ 4 T [185], in contrast to
what we observed here in YFe2Al10 . The field dependent magnetoresistivity
of YFe2Al10 with field along both a and b directions is shown in fig. 4.24b. The
anisotropic behavior actually becomes more significant in fields up to 9 T at
0.5 K.

Although the Kondo expression describes the zero field upturn, we want
to emphasize that the anisotropic behaviors observed in the field dependent
magnetoresistivity cannot be fully explained as the consequence of rare
earth contamination. We also noticed that the field dependencies of the
magnetoresistivity are consistent with the field dependent magnetization and
specific heat, where the crystal a direction is always the most sensitive
direction. From this point of view, it is likely that the low temperature
resistivity is also dominated by the same critical fluctuations at T = 0. This
low temperature upturn in resistivity may indicate that the QCP is related to
the the localization of electrons as T → 0.

4.8 Discussion and Conclusion

4.8.1 Universal Critical Behaviors

We have studied the magnetization and specific heat of the three related
compounds YFe2Al10 , LuFe2Al10 , and YbFe2Al10 . Critical scalings were
found in YFe2Al10 and LuFe2Al10 , indicating that these two materials are
located close to the QCP. However, it is still unclear what kind of QCPs are
present in these compounds. From the scaling we showed earlier, we know
that the critical behaviors in YFe2Al10 and LuFe2Al10 are very similar to each
other. All the magnetic properties could be described equally well using the
same scaling analysis. Most importantly, the assumption with relation (d = z)
describes the scaling functions in both YFe2Al10 and LuFe2Al10 .

To further understand the meaning behind this relation, we have compared
our results on YFe2Al10 and LuFe2Al10 to those obtained in some other well
studied quantum critical systems. We choose three different compounds as
examples: CeCu6−xAux, which was tuned to a AF-QCP at x = 0.1 [17], the
Yb-based mixed-valence compound β −YbAlB4, which is believed to be close
to a QCP at B = 0 without tuning [20], and the layered organic Mott system
κ-(BEDT-TTF)2Br, which is located close to the MIT critical end point [50].
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CeCu6−xAux

Shown in fig. 4.25a is the scaling of the dc magnetic susceptibility of
CeCu6−xAux [17] as

χ = T−0.75f(B/T ).

To make the scaling comparable to the one we found in YFe2Al10 and
LuFe2Al10 , we rewrote this scaling function in a slightly different form as

dχ

dT
= B−1.75ψ(

T

B
). (4.47)

By comparing this to equation 4.6, we can see that
d/yb − 2 = −1.75

z/yb = 1.

Thus, we have 
d/yb = 1/4

z/yb = 1,
(4.48)

and
d/z = 1/4 (4.49)

for the AF-QCP in CeCu6−xAux. Based on this, we can also calculate the
critical exponent

γ = 2yb/z − (d+ z)/z = 0.75. (4.50)

This is consistent with the experimental results where a low temperature
divergence in the magnetic susceptibility χ ∼ T−0.75 was observed near the
critical concentration x = 0.1 of CeCu6−xAux [17].

β−YbAlB4

Different from CeCu6−xAux, β−YbAlB4 is a mixed valence compound, and it
was proposed to be a critical nodal metal [186], where the hybridization gap
induced by the interaction of the 4f magnetic moments and the conduction
electrons vanishes along a line in momentum space. B/T scalings were
observed in the dc magnetization, and the magnetic susceptibility diverges
as a power law as χ ∼ T−γ (γ = 1/2) at low temperatures. The scaling of the
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dc magnetization of β − YbAlB4 is shown in fig. 4.25b, where

−dM
dT

= B−1/2φ(
T

B
)

was observed for a wide temperature and field range [20]. As we did for
CeCu6−xAux, we again wrote the scaling function as

dχ

dT
= B−1.5ψ(

T

B
). (4.51)

This directly gives that 
d/yb − 2 = −1.5

z/yb = 1,

and so 
d/yb = 1/2

z/yb = 1.
(4.52)

with
d/z = 1/2. (4.53)

For the material β − YbAlB4

γ = 2yb/z − (d+ z)/z = 1/2, (4.54)

and this is what observed experimentally [20].
By comparing these results for CeCu6−xAux and β−YbAlB4 to the scaling

analysis we did for YFe2Al10 and LuFe2Al10 , we can clearly see that here the
critical exponents and relations between the scaling dimensions are totally
different from those found in either the AF-QC CeCu6−xAux or the critical
nodal metal β −YbAlB4. This indicates that YFe2Al10 and LuFe2Al10 belong
to different universality classes than CeCu6−xAux and β −YbAlB4. However,
the scaling could still be related to the same critical form of the free energy in
all these compounds

F (B, T ) = T
d+z
z fF (

B

T yb/z
) = B

d+z
yb f̃F (

T

Bz/yb
).

This is not surprising, and actually it is what we should expect from the
universality of systems close to critical points. The differences between these
compounds appear to come from the different values of scaling dimensions d,
z, and yb, which define the different universality classes.
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Figure 4.25: (a) B/T scaling of the dc magnetic susceptibility of CeCu6−xAux

as χ = T−0.75f(B/T ). Solid line is the scaling function f = (1 + x2)−0.75/2,
where x = B/T . Inset shows the B−T range that the scaling applies. (Figure
from [17].) (b) Scaling of the observed dc magnetization of β − YbAlB4.
The data were fitted to the scaling function φ(x) = Λx(A + x2)−1.25, where
x = T/B. (Figure from [20]. )
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κ-(BEDT-TTF)2X

The layered organic charge-transfer salts κ-(BEDT-TTF)2X have been well
studied as excellent examples of systems undergoing metal insulator transitions
(MIT) [48, 49, 50]. The temperature pressure (T − P ) phase diagram has
been established by studying on κ-(BEDT-TTF)2X with increasing pressure
or with changing different monovalent anions X (fig. 1.11) [48, 49, 50]. Scaling
behaviors were observed near the MIT critical end point. The scaling function
and critical exponents are found to belong to the two dimensional (2D) Ising
universality class. The singular part of the free energy is written in the scaling
form as [50]

f(t, h) =
1

8π
t2logt2 + |h|d/yhΦ(t/|h|z/yh). (4.55)

Disregarding the details, this free energy is surprisingly similar to what we
have proposed for YFe2Al10 , where

F (B, T ) = T 2logT 2 +B(d+z)/yb f̃B(T/B
z/yb). (4.56)

The differences between the above two equations are that the scaling
performed in κ-(BEDT-TTF)2Cu[N(CN)2]Br is close to the finite temperature
critical end point at Tc ≃ 39.7 K, and Pc ≃ 248 bar [49]. Since this is a nonzero
temperature CEP, the scaling theory for κ-(BEDT-TTF)2Cu[N(CN)2]Br is
the same as a classical scaling analysis. In contrast, the scaling performed
in YFe2Al10 and LuFe2Al10 relates to a QCP located at T = 0, and B = 0,
where the scaling variables are absolute temperature T and external field B
instead of the renormalized t and h in 4.55. The quantum critical scaling in
YFe2Al10 differs as well from the classical scaling in κ-(BEDT-TTF)2X by the
effective dimension, where d is replaced by d + z. Except for this, the two
scaling functions above are interchangeable.

4.8.2 Conclusion

In this chapter, we have studied the magnetic properties of the family of
compounds YFe2Al10 , LuFe2Al10 and YbFe2Al10 . Scaling analyses of the
magnetic susceptibility and specific heat were performed, and they suggest
that these materials are located close to a QCP at T = 0, and B = 0. Further
analysis of the critical exponents indicate that the critical behaviors may not
be dominated by a normal magnetic QCP. Measurements of resistivity and
thermal expansion hint that these compounds may be close to an itinerant-
localization transition, like a metal-insulator transition (MIT).

A schematic MIT phase diagram with tuning parameter g is shown in
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Figure 4.26: Schematic view of a general Metal-Insulator transition phase
diagram with tuning parameter g. We have proposed that the family material
YFe2Al10 , LuFe2Al10 and YbFe2Al10 may locate close to the MIT QCP at gc
in a sequence indicated by the red arrows. [47]
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fig. 4.26 [47]. The critical region is delineated by the dashed line, below
which the quantum fluctuations dominate. The MIT QCP sits at the critical
tuning parameter gc. When the system is tuned above this critical value
g > gc, the ground state is a localized insulator, while when g < gc, the
ground state turns out to be an itinerant metal. From this point of view,
the MIT QCP is similar to the delocalization-localization QCP seen in the
heavy fermion magnetic compounds. Since the electrons change from itinerant
states on the metallic side to localized and moment-bearing states in the
insulating side, the MIT QCP is usually accompanied by the emergence of
magnetic order. This is why a strong divergence of the magnetic susceptibility
is always observed near the MIT QCP. However, this is the consequence
of the formation of non-interacting localized moments at g ≥ gc in zero
temperature, and no universal critical exponents that relate to the magnetic
susceptibility χ are expected as in magnetic QCPs [22]. These observations are
all consistent with our scaling analysis in YFe2Al10 and LuFe2Al10 , and here we
suggest that the zero temperature MIT QCP is approached in the sequence of
YbFe2Al10 →LuFe2Al10 →YFe2Al10 as indicated by the red arrows in fig. 4.26.
Although the electrons have distinct ground states that are either metal or
insulator at T = 0, it is very hard to find a proper order parameter for MIT-
QCPs that identifies their broken symmetry as in traditional magnetic QCPs.
This makes the studying of the behaviors in the critical region a rather difficult
problem [46, 47]. In our case of YFe2Al10 and LuFe2Al10 , it is likely that the
MIT is driven by interactions like a Mott transition, rather than disorder or
frustration, and the scaling of the magnetic susceptibility and specific heat
has helped us to have some insight into the critical region. However, more
work, especially the pressure and doping measurements, needs to be done in
the future to have a better understanding of this system.
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Chapter 5

Neutron Scattering of the
Quantum Antiferromagnet
Yb2Pt2Pb

This chapter presents a selection of experimental results, including neutron
scattering, that establish the basic properties of the quantum antiferromagnet
Yb2Pt2Pb, which orders at TN ≃ 2.07 K in zero field. The Yb atoms in
this material are paired with nearest neighbors that are orthogonally arranged
to each other in the tetragonal ab plane. This structure is topologically
equivalent to the frustrated two-dimensional (2D) Shastry-Sutherland Lattice
(SSL). Magnetic properties indicate that the Yb atoms form two sublattices
with a well separated doublet ground states of strongly Ising-like spins along
the orthogonal (110) or (1-10) directions. This was confirmed by single crystal
elastic neutron scattering experiments. Further study of the single crystal
inelastic neutron scattering data suggests that interactions in the crystal c
direction are very important, and that the Ising like Yb moments are aligned
into one-dimensional (1D) antiferromagnetically coupled chains along the c
axis. This is in contrast to our expectation of the 2D SSL physics from the
crystal structure. A broad continuum of spinon like excitations is observed at
low temperatures. Non-Fermi liquid behaviors were also observed near the field
induced AF-QCP, indicating that heavy fermion physics may also be relevant
in this system.
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5.1 Introduction

Yb2Pt2Pb has attracted a lot of interest, mostly because of its particular
crystal structure. This ternary compound belong to a large family of
composition R2T2M (R=rare earth, T=transition metals, M=main group),
where the rare earth atoms R form into a two dimensional Shastry-Sutherland
Lattice (SSL), with orthogonal arranged dimers [60, 66, 222, 223]. Frustration
induced by the competing exchange interactions of the intra-dimer J and
inter-dimer J ′ is considered to be important in this compound [66, 67,
222]. Extensive measurements of different thermal, transport, and magnetic
properties have been performed, and a complex field temperature phase
diagram has been established based on the magnetization, and specific
heat data [67, 97]. Interest also arises from the heavy fermion point of
view [66, 67, 222]. Yb2Pt2Pb orders antiferromagnetically at about TN ≃ 2.07
K in zero field. Applying field along the crystal (110) direction leads to a
suppression of the antiferromagnetic order, forming an AF-QCP at about 1.25
T, with a new dome like phase near the critical point observed between 1.25
T and 2.3 T [67, 97, 224, 225].

What we are going to stress in this chapter is the neutron scattering
measurements performed on an array of aligned single crystals. Both the
elastic neutron diffraction and inelastic neutron scattering data will be
discussed. Counter to our expectations, excitations with a spinon like
dispersion along the (00l) momentum direction were observed in zero field,
indicating that the one-dimensional Luttinger liquid may be the dominant
ground state physics in this material. Resistivity measurements were also
reported, and non-Fermi liquid behaviors with linear temperature dependent
resistivity were observed near the AF-QCP. An additional energy scale can be
traced in the field dependent resistivity, which is similar to what was observed
in the heavy fermion AF-QCP in YbRh2Si2 [10, 43], suggesting that heavy
fermion physics may also be relevant in Yb2Pt2Pb as well.

5.1.1 Experimental Details

Thermal property measurements

Yb2Pt2Pb single crystals with a typical size about 0.5 mm in the ab direction
and 4 ∼ 5 mm in the c direction were grown from lead flux [66, 76].
Measurements of the dc magnetization were performed using the commercial
Quantum Designs Magnetic Properties Measurement System (MPMS) for
T > 1.8 K in fields up to 7 T, and a Hall sensor magnetometer for T < 1.8 K in
fields up to 14 T [66, 67, 97]. Electrical resistivity was measured down to 0.1
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K in the Quantum Design Physical Property Measurement System (PPMS)
with the dilution refrigerator (DR) option [66, 97].

Neutron scattering experiments

Single crystal neutron scattering measurements were performed at the Disk
Chopper Spectrometer (DCS) at NCNR, NIST [109], and the Cold Neutron
Chopper Spectrometer (CNCS) at SNS, Oak Ridge [110]. Pictures of the
sample holder and the experimental scattering configuration are shown in
fig. 5.1. Yb2Pt2Pb single crystals were assembled layer by layer on Aluminum
plates, taking advantage of the fact that the crystals form with the (110)
direction perpendicular to the surface, while the long edge is the (001)
direction. About six layers of crystals with total mass about 6 g were stacked
together in this sample holder in fig. 5.1. For each layer, the crystals are co-
aligned with the (110) direction normal to the holder surface, and neutrons
scattered in the (h, h, l) plane. The vertical magnetic field B is along the
(h,−h, 0) direction in both DCS and CNCS measurements.

For the DCS experiment, a dilution refrigerator insert that can access
temperatures as low as 70 mK was used in a 10 T magnet. A beam mask
with size about 1.5cm × 2.5cm was used in front of the sample to reduce
background scattering. For the zero field measurements at base temperature,
a small bias field of about 200 Oe was used to suppress the superconductivity
of the aluminum sample holder. By setting the dark angle at 750 from the
(110) direction and the incident neutron energy Ei = 3.27 meV (λi = 5.0Å),
we could totally avoid undesired background scattering due to the magnet.
Limited by the height of the magnet window, only neutrons scattering from
the sample within angle the θ are counted by the detector with a height H.
In this DCS set up, the distance from the sample to the detector is about
D = 4010 mm, and only the data of the central bank detector were analyzed,
where the detector tubes are about H = 400 mm high. Based on this, we could
estimate the scattering angle θ to be about 5.70 in this experiment. So although
the scattering plane is (h, h, l), there is some scattering from the (h, k, 0) plane
that also contributes to the overall integrated scattering intensity.

For the CNCS experiment, a cryostat that reaches temperatures down to
1.5 K was used in a 5 T magnet. For this experiment, the window of the magnet
is big enough that we do not need to consider whether it blocks the scattered
beams. The incoming neutron energy was fixed at 3.316 meV (λi = 4.97Å),
and the high-flux mode was used to maximize the neutron intensity. The
distance from the sample to the detector in the CNCS experiment is about
D = 3500 mm, and the entire detector is about 2000 mm high. Since we
only integrate 88 pixels of the total 128 pixels of the detectors to avoid some
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Figure 5.1: Left: Sample holders for the single crystal neutron scattering
experiments at DCS in NCNR, NIST, and CNCS, SNS, Oak Ridge. Six layers
of Yb2Pt2Pb crystals were included in the sample holder shown in the picture.
For each layer, Yb2Pt2Pb single crystals were aligned with the (110) direction
normal to the holder surface, with the neutrons scattering in the (h, h, l) plane.
A reference holder with Vanadium foil inside was used for the normalization
analysis. Right: Schematic view of the configuration for both the DCS and
CNCS neutron scattering set ups. The sample holder was mounted with
vertical magnetic field B along the (h,−h, 0) direction. Limited by the height
of the magnet window, only neutrons scattering from the sample within the
angle θ are counted by the detector within height H. This scattering angle
θ was estimated by knowing the distance D and height H as marked in the
figure.
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scattering from the edge of the magnet, the effective height of the detector
in this experiment is about H = 2000 ∗ 88/128 = 1375 mm, and we estimate
θ ≃ 110 in this measurement, which is about twice the scattering angle in DCS.
This small angle would not make much difference in the scattering pattern for
inelastic neutron scattering measurements, and actually a little wider angle θ
usually helps to improve the overall scattering intensity. But for the elastic
diffraction measurements, the peaks which are close to but not in the exact
scattering plane may give misleading information if one simply summed over all
the scattering intensity of the detectors. Fortunately, the CNCS detector is not
just long arrays of tubes which are only sensitive to the horizontal positions
as in DCS, it also has spatial resolution in the vertical direction [110]. We
take advantage of this to get exact information in the (h, h, l) scattering plane
and also part of the information in the (h, k, 0) plane. This in turn helps to
understand better the scattering data taken in DCS at lower temperatures.

5.1.2 Crystal Structure

Yb2Pt2Pb crystallizes in the tetragonal U2Pt2Sn-type structure (space group:
P42/mnm, NO. 136), with the lattice parameters a = 7.7651Å, c = 7.0207Å.
Details of this crystal structure were reported in [66, 222, 226]. Here, to be
clear, we only plot the simplified crystal structure with the two Yb site atoms in
fig. 5.2. In the tetragonal ab plane, Yb atoms form in pairs of nearest neighbor
atoms, and these pairs are arranged orthogonally to each other. This structure
with pairs of Yb atoms is topologically equivalent to the Shastry-Sutherland
Lattice (SSL) [60]. The layer at z = 1/2 is different from the layer at z = 0 by
just switching both Yb1 and Yb2 sites simultaneously, and these two layers
are stacked alternately along the crystalline c axis [66, 222]. We use the same
notation as in [66] for the distance of the Yb near neighbor atoms to emphasize
this SSL structure, as shown in fig. 5.2b. The intra-pair distance between Yb1-
Yb1, and Yb2-Yb2 sites are d1 = 3.9646Å, d2 = 3.5451Å, and the inter-pair
distance between Yb1-Yb2 sites are d3 = 4.196Å, d4 = 3.889Å, respectively.
In this SSL picture, the system is dominated by the interactions in the two
dimensional ab plane, assuming that the interactions between the planes are
not important [66]. However, when we consider the distances between the Yb1-
Yb2 atom along the c axis, we found that d5 = 3.5169Å, which is actually the
smallest bond distance among all the Yb atoms. An alternative way to view
the crystal structure is as one-dimensional (1D) chains or ladders extending
along the c axis, as shown in fig. 5.2a. The Yb ions are first coupled into
chains or ladders along in the c direction through the bonds d1, d2 and d5,
and these orthogonal arranged chains or ladders are then interact with each
other through bonds d3 and d4. However, we can not tell whether the 1D
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Figure 5.2: (a) A simplified crystal structure of Yb2Pt2Pb with Yb atoms
sitting at two Wyckoff sites: Yb1 (4f site) and Yb2 (4g site). (b) Pairs of
Yb nearest neighbor atoms are orthogonally arranged to each other in the
ab plane, which is topologically equivalent to the Shastry-Sutherland Lattice
(SSL). [66]

chain model or the 2D SSL is more suitable for the material just based on
the crystal structure. We will use magnetic properties and neutron scattering
experiments to answer this question.

5.1.3 Magnetic Properties

Curie-Weiss behaviors were found at high temperature magnetic
susceptibilities for fields both along the crystal c axis and in the ab plane.
The fitted effective moments µeff = 4.42µB for B∥(110) and µeff = 4.54µB

for B∥(001) are very close to the expected value 4.54µB for free Yb3+ ions
with J = 7/2 [66]. The eight degenerate states (2J + 1 = 2 ∗ 7/2 + 1 = 8)
were split into four doublet states due to the tetragonal crystal environment
in Yb2Pt2Pb [66]. The low temperature magnetic properties are dominated
by the the ground doublet state.

The temperature dependence of the B = 0 specific heat is shown in fig. 5.3,
where the phonon contribution estimated from the Debye model has been
subtracted from the as-measured specific heat [66]. At the antiferromagnetic
phase transition around 2.07 K, only about half of the entropy (S = 0.58Rln2)
of the doublet ground states was recovered, and a tail extending to about
8 K was observed, indicating that strong fluctuation exist above the AF
transition [66]. The full entropy S = Rln2 was only recovered for temperatures
T ≥ 10 K, which is significantly different from the situation found in the local
moment antiferromagnet Yb3Pt4, shown earlier in Chapter 3. A broad peak
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Figure 5.3: Temperature dependent specific heat of Yb2Pt2Pb in zero field.
The phonon contribution has been estimated from the Debye model, and
subtracted from the measured specific heat. The full entropy S = Rln2 of
the ground doublet states is only recovered for T ≃ 10 K, indicating that
strong fluctuations exist above the transition at 2.0 K. A sketch of the four
CEF doublets is shown in the inset, where the first excited states are about
∆1 ≃ 70 K above the doublet ground states. [66]

was observed in Yb2Pt2Pb at temperatures for T ∼ 30 K, which comes from
the excitations to higher CEF levels. This broad maximum was fitted to the
Schottky expression with three excited doublet states, and the schematic view
of the full CEF configuration was shown in fig. 5.3(inset), where the first
excited states are about ∆1 ≃ 70 K above the doublet ground states [66].

Ising Spin, Two Yb Sublattice Model

The full CEF configuration of Yb2Pt2Pb with four separated doublet states
is also found in many other Yb based systems [123, 135, 227], however, the
particular wave function of the ground doublet in Yb2Pt2Pb is more unusual.
Shown in fig. 5.4 is the field dependent magnetization of Yb2Pt2Pb for fields
along the crystal (001), (110) and (100) axes, respectively [66]. Very strong
anisotropy was observed between the tetragonal ab plane and the crystal c
axis. For magnetic field B ∥ 001, the measured dc magnetization at 1.9 K
does not saturate in fields as large as 14 T, and the measured magnetization
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Figure 5.4: Field dependent magnetization of Yb2Pt2Pb measured at T = 1.9
K, for B along the crystal (001), (110) and (100) axes as marked. [66, 67]

M001(14T ) ≃ 0.25µB is about 10 times smaller than the saturation value in
the ab plane. This means that the Yb moments are confined to the ab plane at
low temperatures. Anisotropic behaviors were also observed in the ab plane.
The measured magnetization saturates to the value M100 ∼ 2.6µB for fields
B∥(100) ≃ 3.5 T, and M110 ∼ 1.9µB for fields B∥(110) ≃ 2.3 T [66, 224].

A two sublattice model of Ising spins along the orthogonal (110) and (1-10)
axes was first proposed by [224], assuming jz = | ± 7/2⟩ as the ground states
for the Yb doublet ground state. With this assumption, the full saturation
moments would be Ms = gJJµB = 8/7 ∗ 7/2µB = 4µB if all the Yb ions
are fully polarized. However, due to the strong Ising structure, only half
of the Yb moments are saturated in this field range when B∥110, and this
gives about M110 = 2µB, which is close to the observed value M110 ∼ 1.9µB.
Accordingly, for fields B∥100, all the Yb moments will be eventually polarized,
but since the moments are rigidly fixed in the orthogonal (110) and (1-
10) directions, M100 = Ms/

√
2 = 4/

√
2 = 2.8µB was observed. This also

explains the relative value of the two critical fields Bc110 and Bc100, where
Bc100 =

√
2Bc110 ≃ 3.25 T, which is also close to the observation [224].

Based on this model, two different configurations for the Yb Ising moments
are possible. As shown in fig. 5.5, the Yb moments could point either along
the diagonal direction (fig. 5.5a) or perpendicular to the diagonal direction
(fig. 5.5b). The first scenario shown in fig. 5.5a is similar to the magnetic
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Figure 5.5: Two possible Yb spin configurations in the ab plane. The Yb ions
are divided into two sublattice with Ising spins along the orthogonal (110) and
(1-10) axes. The Ising spins are aligned along the diagonal pair direction in
(a), and are perpendicular to the diagonal direction in (b).

structure of the compounds U2Pt2Sn and GdB4 [228, 229], as also noted by
Moosung Kim in [66]. Recently, Wojciech Miiller of our group made a heroic
breakthrough with solving the magnetic structure in zero field, where the spin
configuration in fig. 5.5b gives the better fitting of the diffraction pattern [230].

Magnetic Phase Diagram

Extensive studies of magnetic properties such as the magnetization, specific
heat, and MCE have been performed, and a very rich phase diagram in fields
B∥110 at low temperatures was established [97], as shown in fig. 5.6. The
many vertical phase lines inside the magnetic order at low temperatures are
related to plateau phases in the field dependent dc magnetization [67, 97],
as shown in fig. 5.6a. The two dashed horizontal lines are determined from
the temperature dependent resistivity and specific heat measurements, but
they are not seen in dc magnetization measurements. X-ray diffraction has
been performed in fields up to 4.0 T at temperatures down to 1.8 K, and no
new diffraction peaks were observed across the horizontal phase line at 2.0 K,
indicating that this is not a structural transition. One of our questions is how
to understand this phase line. Is it a magnetic transition? If it is, then why is
no signature observed in the temperature dependent magnetization measured
in high fields? As we have explained, the slope of the phase line can be related
to the thermal properties through the Clausius-Clapeyron relation:

dT

dB
= −∆M

∆S
.
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Figure 5.6: (a) Magnetic field dependent dc magnetization (black line)
measured at 0.06 K with field along the (110) direction using the Hall
sensor magnetormeter. The red line is the field derivative of the measured
magnetization dM/dB. (b)Field-Temperature phase diagram with fields
B∥110 from the the magnetization, specific heat, and MCE measurements.
The two dashed horizontal lines at TN1 ≃ 2 K, and TN2 ≃ 0.8 K are determined
from the temperature dependent resistivity and specific heat measured in
fields. [97]
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For first order phase transitions at finite temperatures, the entropy change is
not zero (∆S ̸= 0). Consequently, the only way to keep the slope of the phase
line horizontal (dT/dB = 0) is to make the change of the magnetization zero
(∆M = 0). This means that even it is a first order magnetic phase transition,
there could must be no jump in the magnetization at this phase transition.
For second order phase transitions, this implies that even the derivative of the
magnetization will be continuous across the horizontal phase lines. We will
discuss below the elastic neutron scattering experiments that will shed light
on these horizontal phase lines.

5.2 Elastic Neutron Scattering Measurements

In this section, we will first focus on the CNCS data measured at 1.5 K in fields
up to 4.75 T. After this, we will also discuss the elastic neutron scattering
data taken at DCS at 0.1 K in fields up to 4 T. Two sets of magnetic peaks
were observed, with different temperature and field dependencies, providing
evidence for the two sublattice model.

5.2.1 Elastic neutron scattering in the [H, H, L] plane

Scattering at different temperatures in fields B = 0

Shown in fig. 5.7 is the contour plot of the elastic neutron scattering intensity
in the [H, H, L] plane taken at CNCS at different temperatures from 1.5 K to
2.5 K in zero field. Here we have limited the integration along the (H,−H, 0)
direction to a narrow range [-0.05, 0.05] to avoid any contribution from the
[H, K, 0] plane. At temperatures above the phase transition TN ≃ 2.07 K, we
can clearly see two nuclear peaks at positions (002), and (112) (fig. 5.7d). The
(111) peak is also an allowed nuclear peak in zero field, however, its neutron
scattering structure factor is very small compared to other nuclear peaks.
Thus the (111) peak is almost invisible in this contour plot. Lowering the
temperature from 2.5 K to 2.0 K (fig. 5.7c) leads to three broad diffuse satellites
that appear around (0.2, 0.2, 1), (-0.2, -0.2, 1), and (0.8, 0.8, 1). Lowering the
temperature still further to 1.8 K and 1.5 K leads to the development of well
defined diffraction peaks at these three positions, as shown in fig. 5.7b and
fig. 5.7a. Two new peaks appear at positions (1.2, 1.2, 1), and (1.8, 1.8, 1),
but with lower peak intensities compared to the peaks at (0.2, 0.2, 1), (-0.2,
-0.2, 1), and (0.8, 0.8, 1). All these new peaks have the propagation vector
q1 = (±0.2,±0.2, 0)r.l.u. We also noticed that all the new magnetic peaks
appear at positions with L = 1, and no additional peaks have been observed
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for L = 0 or L = 2. This gives us some hints about the zero field magnetic
structure [230]. The propagation vector q1 = (±0.2,±0.2, 0) indicates that
we have a 5 × 5 superstructure in the ab plane, and the absence of magnetic
peaks in L = 0, and L = 2 plane suggests that the magnetic moments are
antiferromagnetically coupled between the planes. The scattering intensity at
magnetic peak positions (0.2, 0.2, 1), (-0.2, -0.2, 1), (0.8, 0.8, 1) and nuclear
peak positions (002), (112) have been fitted to Gaussian expressions, and the
fitted peak intensities are plotted in fig. 5.8 as functions of temperatures.
With increasing temperature, the scattering intensity of the magnetic peaks
decreases rapidly as the 2.07 K phase transition is approached. However,
the magnetic intensity does not go to zero at 2.0 K, and a small tail was
observed that extends up to ∼ 3 − 4 K. The continuous change of the peak
intensity across the phase transition indicates that this is a second order phase
transition, and the tail above the transition temperature suggests that critical
fluctuations are important near the phase transition. This result is consistent
with the specific heat measurements shown in fig. 5.3, where a long tail in the
specific heat was also observed above 2.0 K. No significant change has been
observed for the two nuclear peaks (002) and (112) across the phase transition
around 2.07 K.

To have a better understanding of the phase transition in zero fields around
TN , we did a more careful analysis by using the scan at 1.6 K in a field
of 4.75 T as a background. The subtracted zero field data are shown in
fig. 5.9 for temperatures from 1.5 K to 5.0 K. With this subtraction, the
nuclear contributions at positions (001) and (112) are completely removed,
and the diffuse scattering above 2.0 K is now more pronounced in the relative
intensity, as seen in fig. 5.9b, and fig. 5.9c. With decreasing temperature,
the broad diffuse scattering quickly develops into the narrow elastic magnetic
diffraction peaks below the transition. Since the (0.8, 0.8, 1) peak has the
strongest scattering intensity, we chose it for detailed analysis. Shown in
fig. 5.10a and fig. 5.10b are the scattering intensities of the magnetic peak
(0.8, 0.8, 1) at different temperatures across the longitudinal (0.8, 0.8, l) and
the transverse (h, h, 1) directions, respectively. With decreasing temperature,
the peak intensity increases, while the peak width decreases as T → TN . For
the scattering intensity integrated along one direction in the momentum space,
it can be fit to the Lorentzian expression:

f =
A

π

Γ

(q − q0)2 + Γ2
, (5.1)

as indicated by the solid lines. The fitting parameter A is proportional to
the peak intensity, which serves as the order parameter of the zero field
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Figure 5.7: Elastic neutron scattering pattern in the [H, H, L] plane taken at
CNCS at different temperatures (a) 1.5 K, (b) 1.8 K, (c) 2.0 K and (d) 2.5 K
in zero fields.
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Figure 5.8: Temperature dependencies of the different elastic peak intensity
in zero fields. (0.2,0.2,1), (-0.2,-0.2,1), and (0.8,0.8,1) are the three magnetic
peaks, which develop rapidly below the 2 K transition temperature, and (001)
and (112) are two nuclear peaks, whose intensities are almost independent of
temperature.
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Figure 5.9: Contour plots of the zero field elastic scattering intensity in the
[H, H, L] plane at temperatures (a) 1.5 K, (b) 2.1 K, (c) 3.0 K, and (d) 5.0 K
with the 1.6 K, 4.75 T data subtracted as background.
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Figure 5.10: Scattering intensity of the magnetic peak (0.8, 0.8, 1) at different
temperatures across the longitudinal (0.8, 0.8, l) (a), and the transverse
(h, h, 1) directions (b). The solid lines are fits to the Lorentzians. (c)
Temperature dependence of the fitted peak intensity of the (0.8, 0.8, 1)
magnetic peak along both the (0.8, 0.8, l) and (h, h, 1) directions. (d) Log-
log plot of the fitting of the magnetic intensity I − I0 in relation to the
reduced temperature T − TN . The red lines in (c) and (d) are fits to power
law expressions as indicated. (e) Temperature dependencies of the fitted full
width at half maximum Γ along the (0.8, 0.8, l) and (h, h, 1) directions. (f)
Plot of the correlation length ξ = 1/Γ as a function of temperature near the
phase transition at 2.0 K. 170



antiferromagnetic order. The temperature dependence of the fitted peak
intensity is plotted in fig. 5.10c across both longitudinal and transverse
directions. The red line is the fit of this peak intensity to the power law
expression:

I = I0 + (T − TN)
2β. (5.2)

By fixing the ordering temperature TN = 2.0 K, a reasonable fitting is shown
in fig. 5.10c and fig. 5.10d with the critical exponent β ≃ 0.124± 0.006. This
value is close to β = 1/8, which one would expected from the 2-dimensional
Ising universality class. As we have discussed earlier, the Yb moments are
constrained in the ab plane, with strong Ising like character. Thus it is
not surprising that the zero field antiferromagnetic order falls into the 2-D
Ising universality class. The tail of the magnetic peak intensity above the
transition temperature suggests the existence of critical fluctuations,with a
spatial correlation length that can be estimated from the full peak width
at the half maximum Γ of the fitting. Temperature dependencies of the
fitted peak width Γ along the (0.8, 0.8, l) and (h, h, 1) directions are shown
in fig. 5.10e. With decreasing temperature, the value of Γ quickly decreases to
a constant value below the transition temperature 2.0 K. The temperature
dependencies of the associated correlation length ξ = 1/Γ are plotted in
fig. 5.10f. As we approach the transition temperature T → TN , the correlation
length ξ increases to ∼ 5− 10Å, which is about the same scale as the crystal
lattice parameter ∼ 7Å. Anisotropic behaviors were seen in the fitted peak
width Γ for cuts along the (0.8, 0.8, l) and (h, h, 1) directions, which may be
intrinsic. However, the experiments were performed on hundreds of aligned
single crystals, we have to consider the mosaic arising from the quality of the
alignment. Since the crystals are long needle or bar like along the c axis, the
broadening in the longitudinal (0.8, 0.8, l) direction may also be due to some
misalignment of crystals in the c directions.

Scattering in different fields at T = 1.5 K

Now we focus on the field dependencies of these magnetic peaks at T = 1.5K.
Contour plots of the elastic neutron scattering patterns in the [H, H, L] plane
in fields from 0.2 T up to 3.0 T are shown in fig. 5.11. With increasing field,
the three magnetic peaks at (0.2, 0.2, 1), (-0.2, -0.2, 1) and (0.8, 0.8, 1) become
very broad just above the the phase boundary in fields B = 0.8 T at T = 1.5 K
(fig. 5.11c), and disappear for fields B ≥ 1.0 T (fig. 5.11 d-f). The scattering
intensity of the (0.8, 0.8, 1) peak was fitted to a Gaussian function, and the
field dependence of the fitted scattering intensity is plotted in fig. 5.12. The
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Figure 5.11: Elastic neutron scattering pattern in the [H, H, L] plane taken at
CNCS in different fields (a) 0.2 T, (b) 0.7 T, (c) 0.8 T, (d) 1.0 T, (e) 2.0 T,
and (f) 3.0 T at temperatures around 1.5 K.
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Figure 5.12: Magnetic field dependence of the scattering intensity of the peak
(0.8, 0.8, 1) at temperatures around 1.5 K. The red line is the fit to the power
law expression as indicated.

red line is the fit to the power law expression:

I = I0 + (B −Bc)
2β, (5.3)

with the critical field Bc = 0.75 T, and the critical exponent β = 0.15± 0.02.
This value is close to the one we obtained from the temperature dependent
scattering intensity in zero fields (fig. 5.10c-d), confirming the 2D Ising
universality class. Similarly, tails of diffuse scattering were observed above
the critical field, indicating the importance of critical fluctuations. All three
B = 0 magnetic peaks disappear at almost the same critical fields, and no
other anomalies were observed for fields above ∼ 1.0 T.

We have also checked the field dependencies of the elastic peak intensities
at Q=(0, 0, 2), (1, 1, 2) and (1, 1, 1), as shown in fig. 5.13. Although all three
peaks have only nuclear contributions in zero field, they behave differently
in fields. With increasing fields, the (0, 0, 2) peak has an almost constant
intensity up to fields of about 0.8 T. The peak intensity then increases about
two times more beyond the original nuclear intensity, and finally saturates
above fields ∼ 2.5 T. The scattered intensity of the (1, 1, 2) peak is constant
over the entire magnetic field range up to 4.75 T. The (1, 1, 1) peak is an
allowed nuclear peak, but with very weak scattering intensity. With increasing
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Figure 5.13: (a)Elastic neutron scattering intensity of the (0, 0, 2) peak as a
function of energy, measured at 1.5 K in fields 0 T, 2 T, and 4 T as indicated.
(b)Elastic neutron scattering intensity of the (1, 1, 2) peak as a function of
energy measured at 1.5 K in fields 0 T, 2 T and 4 T, as indicated. (c)Elastic
neutron scattering intensity of peak (1, 1, 1) as function of energy measured
at 1.5 K in fields 0 T, 1 T, and 4 T as indicated. The solid lines in (a), (b) and
(c) are the fits to the Gaussian expression. (d) Magnetic field dependencies
of the peak intensity from the fits at Q=(0, 0, 2), (1, 1, 2) and (1, 1, 1) with
T = 1.5 K.
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fields, the peak intensity also increases, but saturates in fields larger than about
B > 2.5 T. However, the overall change of intensity is about one order smaller
compared to that of the (0, 0, 2) peak, leading to greater uncertainty in the
fitted peak intensity.

5.2.2 Elastic neutron scattering in the [H, K, 0] plane

The phase diagram shown in the first section of this chapter has two horizontal
phase lines that are almost independent of the magnetic field B (fig. 5.6).
As we mentioned above, all three magnetic peaks with propagation vector
q1 = (±0.2,±0.2, 0) in the [H, H, L] scattering plane disappears above the
magnetic phase boundary, which is around 0.8 T at 1.5 K. No magnetic peaks
in the [H, H, L] plane were observed in fields below the horizontal phase
line at 2.0 K. We are able to resolve the scattering in the [H, K, 0] plane
using the CNCS data, and this greatly clarifies the situation when we examine
this scattering in the [H, K, 0] plane as a function of magnetic fields and
temperatures.

Scattering at different temperatures for B = 0

Shown in fig. 5.14 are the contour plots of the B = 0 elastic neutron scattering
intensity in the [H, K, 0] plane at different temperatures from 1.5 K to 2.5
K. The scattering is not completely symmetric around the origin, which may
be caused by a misalignment of a few degrees. Although we could reach only
a very small part of the [H, K, 0] plane, the accessible range within about
(h,−h) ≃ [−0.2, 0.175] already gives us a lot of information. It becomes
very clear that there is an additional set of satellite peaks with a different
propagation vector q2 = (±0.2,∓0.2, 0) located around the positions (001),
and (111), in addition to the satellite peaks with q1 = (±0.2,±0.2, 0) seen in
the [H, H, L] scattering plane (fig. 5.14a). With increasing temperature, both
sets of satellite peaks become weaker and broader around the 2.0 K transition
(fig. 5.14b-c), and disappears at T = 2.5 K(fig. 5.14d). The scattering that
remains at 2.5 K for (h,−h) ≃ [0.15, 0.175] likely originates from background
scattering from the edge of the magnet.

Scattering in different fields at T = 1.5 K

From fig. 5.14, we can see that the zero field transition at 2.0 K involves two
sets of magnetic peaks with different propagation vectors q1 = (±0.2,±0.2, 0),
and q2 = (±0.2,∓0.2, 0). We already know from fig. 5.11 and fig. 5.12 that the
satellite peaks with q1 in the [H, H, L] plane disappear at the magnetic phase
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Figure 5.14: Elastic neutron scattering in the [H, K, 0] plane, taken at CNCS
at different temperatures (a) 1.5 K, (b) 1.9 K, (c) 2.0 K, and (d) 2.5 K in zero
fields.
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Figure 5.15: Elastic neutron scattering in the [H, K, 0] plane taken at CNCS
in different fields (a) 0 T, (b) 0.7 T, (c) 0.8 T, (d) 1.0 T, (e) 3.0 T, and (f) 4.0
T at base temperature around 1.5 K.
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Figure 5.16: Magnetic field dependence of the measured intensity of the peak
(0.2, -0.2, 1) for T = 1.5 K.

boundary around 0.8 T, but it is worthwhile to check the field dependencies
of the other set of satellite peaks with q2. Shown in fig. 5.15 is the elastic
scattering pattern in the [H, K, 0] plane in different fields from 0 T up to
4.0 T. There is some heating, possibly due to eddy currents induced by the
swept magnetic field, and the base temperature shifts from 1.5 K in zero field
to about 1.6 K in 4.0 T. Despite this small difference in temperature, the
satellite peaks with q2 = (±0.2,∓0.2, 0)r.l.u. survive to the highest measuring
fields with almost constant intensity, as shown in fig. 5.16, while the magnetic
peaks with q1 = (±0.2,±0.2, 0) disappear around 0.8 T, just as we expected.

Scattering at different temperatures in fields B = 4.75 T

Scans at different temperatures from 1.6 K to 2.5 K were also performed in
fixed magnetic field B = 4.75 T, as shown in fig. 5.17. As the horizontal phase
line at 2.0 K is approached in a fixed field of 4.75 T, the magnetic peaks with q2
become much weaker, and finally disappear at T = 2.5 K. The peak intensities
extracted from fig. 5.17 and fig. 5.14 are plotted together in fig. 5.18. We see
that the magnetic peaks with propagation vector q2 = (±0.2,∓0.2, 0) are not
affected by the magnetic field along the (1, -1, 0) direction, but they disappear
with increasing temperature at the horizontal phase line at 4.75 T. This is a
direct evidence of the existence of the horizontal phase line at 2.0 K.
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Figure 5.17: Elastic neutron scattering in the [H, K, 0] plane taken at CNCS
at different temperatures (a) 1.6 K, (b) 1.9 K, (c) 2.0 K, and (d) 2.5 K in fields
B = 4.75 T.
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Figure 5.18: Temperature dependence of the measured intensity of the peak
(0.2, -0.2, 1) in fields B = 0 T and B = 4.75 T.

Based on these observations, we divide the magnetic structure of
Yb2Pt2Pb into two separate magnetic sublattices, and the Yb magnetic
moments on each lattice are fixed along either (1, 1, 0) or (1, -1, 0) directions.
When fields are applied along one of these two directions, only the sublattice
with spins pointing in this direction is polarized, while the other sublattice
with spins in the perpendicular direction is not affected at all, due to the
strong Ising character of the moments.

5.2.3 Elastic neutron scattering at DCS

The elastic neutron scattering in the [H, H, L] scattering plane at temperature
T = 0.1 K in different fields up to 4.0 T is extracted from the DCS data set,
as shown in fig. 5.19. The scattering intensity was integrated over all the data
in the the central detector bank, so some contribution from the [H, K, 0] plane
within the angle θ is included. For example, the peak at Q = (0, 0, 1) shown
in fig. 5.19a comes from the tails of the two satellite peaks at (0.2,−0.2, 1) and
(−0.2, 0.2, 1), outside of the [H, H, L] plane. Despite this, there are some new
and interesting features at 0.1 K that are absent in the 1.5 K scans shown in
fig. 5.11. The first is that the propagation vector q1 for the satellite peaks in
the [H, H, L] plane is not fixed to q1 = (±0.2,±0.2, 0) with increasing fields.
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Figure 5.19: Contour plots of the elastic neutron scattering intensity in the [H,
H, L] plane taken at DCS at temperature T = 0.1 K in different magnetic fields
(a) 0 T, (b) 0.75 T, (c) 1.25 T, (d) 1.6 T, (e) 2.3 T and (f) 4.0 T. The plots
were integrated with all the data in the central bank, and some contribution
from the [H, K, 0] plane is included.
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Figure 5.20: Contour plots of the propagation vector q1 = (∆qh,∆qh,∆ql) as
a function of magnetic field B at temperature T = 0.1 K. (a) Contour plot of
the field dependent propagation vector q = (h, h) with fixing l = 1. The two
satellite peaks at q = (0.2, 0.2, 1) and q = (−0.2,−0.2, 1) could be traced up to
the field B about 0.75 T. (b) Contour plot of the field dependent propagation
vector q = (h, h) with fixing l to the new peak positions for fields above 0.75
T. (c) Contour plot of the field dependent propagation vector q = l with fixing
(h, h) at the peak positions.
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For magnetic fields B ≥ 0.75 T, the satellite peaks start to split into two new
peaks along the longitudinal l direction, and this splitting increases for fields
increasing up to about 1.25 T, as shown in fig. 5.19c. These satellite peaks
disappear if that field is above 1.25 T, and some new peaks remain around (0,
0, 1.25) and (0, 0, -1.25) at 1.6 T and and 2.3 T (fig. 5.19d and fig. 5.19e).
This may be related to the low temperature dome phase shown in fig. 5.6. At
B = 4.0 T, in addition to the nuclear peaks at (0, 0, 2), (1, 1, 2), (1, 1, 1),
(1, 1, 0) and (2, 2, 0), there are still a few magnetic peaks left at positions
(0.5, 0.5, 1), (1.5, 1.5, 1) and (1.5, 1.5, -1), and two satellite peaks at (1.4,
1.4, 0) and (1.6, 1.6, 0). These new magnetic peaks observed in B = 4.0 T
at T = 0.1 K are likely to be related to the second field independent phase
line around 0.8 K. The three peaks at (0.5, 0.5, 1), (1.5, 1.5, 1) and (1.5, 1.5,
-1) could all be assigned to another propagation vector q3 = (±0.5,±0.5, 0),
which suggest that the unit cell of each sublattice is doubled again below the
second horizontal phase line at 0.8 K. Higher order harmonics were observed
in the low field (fig. 5.19a-c), indicating that the spins may be frozen into a
square wave like superstructure [230].

To have a better idea of the field dependencies of the satellite peaks
at (0.2, 0.2, 1) and (−0.2,−0.2, 1), we have traced the peak positions in
different fields, and project them onto the transverse (hh) and longitudinal l
directions, as shown in fig. 5.20. First, we focus on the change of propagation
vector q in the (hh) direction. Fig. 5.20a is the contour plot of the field
dependent propagation vector q = (h, h) with l = 1. The satellite peaks at
q1 = (∆qh,∆qh,∆ql) gives to q1 = (±0.2,±0.2, 0) for the field B up to about
0.75 T. Above this field, the satellite peaks start to shift along l, and by fixing
l to the new peak positions, these satellite peaks could then be traced up to
about 1.25 T (fig. 5.20b). From fig. 5.20b, we also noticed that for fields above
about 0.75 T, the propagation vector ∆qh along the (h, h) direction shifts in
magnitude from 0.2 reciprocal lattice units (rlu) to 0.175 rlu at about 1.1 T,
and this value jumped to about 0.15 at about 1.25 T. Fig. 5.20c is the contour
plot of the field dependent propagation vector projected onto the longitudinal
direction l with fixed (h, h) at the peak positions. Step-like anomalies were
observed in fields between about 0.5 T to 1.25 T, which correspond to those
plateaus found in the field dependent magnetization. The change of ∆qh from
0.2 suggests that the unit cells in these higher field plateau phases are bigger
than the 5× 5 superstructure found in zero field, and the change of ∆ql from
zero indicates the increase in the size of the unit cells along the chain direction
in these plateau phases.

Shown in fig. 5.21 are the field dependencies of the scattering intensity at
peak positions Q=(0, 0, 2) and Q=(1, 1, 2), measured at temperature T = 0.1
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Figure 5.21: Magnetic field dependencies of the scattering intensity at peak
positions Q=(0, 0, 2) and Q=(1, 1, 2) measured at temperature T = 0.1 K.
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dependent neutron scattering intensity of peak (002) at T = 0.1 K (DCS,
black solid circle) and T = 1.5 K (CNCS, red solid triangle).

184



K. The intensity of the (1, 1, 2) peak is still almost constant over the entire
field range. But for the (0, 0, 2) peak, the scattering intensity increases rapidly
for fields larger than 0.5 T, and saturates for fields above 2.3 T. In order to
directly compare the data measured at CNCS at 1.5 K to the data taken at
DCS at 0.1 K, we have re-scaled the magnitude of the field dependent (0, 0,
2) peak intensity in both DCS and CNCS experiments to the measured dc
magnetization at 1.5 K and 0.1 K, before plotting them together, as shown in
fig. 5.22. The measured neutron scattering intensity matches well with the dc
magnetization data. In addition, we might be able to use the scaling factor
found in this figure to relate the absolute intensities of the DCS and CNCS
experiments in the future. We have noticed that, even at 0.1 K, the measured
dc magnetization is still finite and increases with a small slope for field B < 0.5
T, which is the first critical field seen in the magnetic phase diagram. However,
the measured magnetic scattering intensity at the (002) peak is almost zero
below 0.5 T at 0.1K. We attribute this finite dc magnetization below 0.5 T to
a paramagnetic contribution, which will be corrected by subtracting a small
linear background in the future analysis.

5.3 Inelastic Neutron Scattering

The elastic neutron scattering data discussed in the previous section confirms
the two sublattice model with Ising spins pointing along the orthogonal (110)
or (1-10) directions. However, it is still unclear how important the SSL
expected from the crystal structure in the ab plane is to the physics of
Yb2Pt2Pb . We briefly discuss the inelastic neutron scattering experiment
results in this section, as a first look at this issue.

Shown in fig. 5.23 is the energy slice along the (0, 0, l) direction with (hh)
integrated over the range [1.4,1.6] rlu in different fields from 0 T to 1.6 T,
as indicated. As was discussed earlier, the Yb ions in Yb2Pt2Pb can be
viewed as forming in a 2D SSL with orthogonal arranged pairs of Yb nearest
neighbors [66]. Our first starting point is that Yb2Pt2Pb consists of weakly
coupled SSL planes. Since the experiments were performed at 0.1 K, where
the thermal fluctuations should be very weak, we expect a narrow and almost
wave vector independent excitation at this temperature for Q ∥ (00l), as
seen in the SSL compound SrCu2(BO3)2 [64]. Thus it was very surprising
that a broad continuum with significant dispersion in the (00l) direction was
observed at 0.1 K in zero field (fig. 5.23a). We have chosen (hh) ≃ 1.5
where two continua are symmetric around l = 0, which demonstrates that
these particular Q dependencies are not experimental artifacts. This broad
continuum of excitations shows very interesting behaviors in field. As seen in
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fig. 5.23b, part of the intensity extends to lower energies, and the dispersion
becomes gapless at l = (1±∆ql), with ∆ql ≃ 0.1 for B = 0.75 T. Increasing the
field up to 1.25 T makes it more clear that there is some dispersion connecting
the points l = (1±∆ql) with ∆ql ≃ 0.3. The dispersion inside the dome phase
region at 0.1 K in 1.6 T is more complex, as shown in fig. 5.23d. The excitations
are gapless around l = (1 ± ∆ql) with ∆ql ≃ 0.4. More careful analysis still
needs to be done to understand these field dependencies, especially inside the
dome phase.

Shown in fig. 5.24 is the energy slice of the DCS data with B = 0 at
T = 0.1 K, along the (h, h, 0) direction with l integrated over different ranges
from l = 0 to l = 2. The extra intensity in the inelastic scattering in fig. 5.24a
near hh = 1 and hh = 2 is not from real inelastic excitations, but comes
from the tails of strong elastic diffraction peaks (110) and (220). The extra
scattering in fig. 5.24b near hh = 0.2 and hh = 0.8 is also from the tails
of the strong elastic diffraction peaks (0.2, 0.2, 1) and (0.8, 0.8, 1). Besides
these, the excitations observed at l = 1(fig. 5.24b) and l = 1.5(fig. 5.24c) are
almost flat along the (h, h, 0) direction. The magnetic scattering intensities
at l = 0 (fig. 5.24a) and l = 2 (fig. 5.24d) are very weak, just slightly above
background, while scattering at l = 1 has the strongest intensity.

The significant dispersion along the l direction compared to the weak
dispersion in the hh direction strongly demonstrates that the interaction along
c is very important. It may even be the dominant factor for understanding the
low temperature physics in Yb2Pt2Pb . We have plotted the field dependent
dc magnetization M/Ms (solid line) measured at 0.1 K together with the
l component of the propagation vector (∆ql), as shown in fig. 5.25. The
dc magnetization M shown here has already been corrected by a linear
background to compensate the paramagnetic contribution below 0.5 T as
discussed before, and the saturation moment Ms = 1.9µB is taken from
the high field magnetization data 5.4 [66]. The colored contour plot is the
∆ql extracted from the elastic neutron scattering experiments, as shown in
fig. 5.20c, and the empty circles are the ∆ql where the inelastic data become
gapless or nearly so, as shown in fig. 5.23. It is surprising to see that the l
component of the propagation vector ∆ql traces the plateaux of M(B)/Ms so
well. The values of ∆ql where the inelastic scattering dispersion curve become
gapless roughly follow the same trend. This relation with

∆ql = π(1−M/Ms) (5.4)

is similar to what has been observed in the quantum spin-ladder material
(C5H12N)2CuBr4 [234]. In our case, Yb3+ ions remain in the ground doublet
states (Jz = | ± 7/2⟩), which can be treated as pseudo-spin 1/2 states. The
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Figure 5.23: Inelastic neutron scattering measured at DCS at temperatrue
T = 0.1 K. (a)-(d) is the energy slice along the (0, 0, l) direction with (hh)
integrated over the range [1.4,1.6] in different fields from 0 T to 1.6 T as
indicated.
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Figure 5.24: Inelastic neutron scattering pattern measured at DCS at
temperatrue T = 0.1 K in zero fields. (a)-(d) is the energy slice along the
(h, h, 0) direction with l integrated over different ranges as indicated. The
extra intensity in the inelastic scattering in (a) near hh = 1 and hh = 2 come
from the tails of the strong elastic diffraction peaks (110) and (220). The extra
scattering in (b) near hh = 0.2 and hh = 0.8 are from the tails of the strong
elastic diffraction peaks (0.2, 0.2, 1) and (0.8, 0.8, 1).
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Figure 5.25: Field dependent dc magnetization M/Ms (solid line) measured
at 0.1 K plotted together with the l component of the propagation vector
∆ql. The colored contour plot is the ∆ql extracted from the elastic neutron
scattering experiments, as shown in fig. 5.20c, and the empty circles are the ∆ql
that correspond to the wave vectors when the inelastic data become gapless,
or nearly so, as shown in fig. 5.23.
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observation of relation 5.4 in fig. 5.25 is strong evidence that one dimensional
physics along c is crucial in Yb2Pt2Pb .

Shown in fig. 5.26a is the inelastic neutron scattering intensity in the [H,
H, L] scattering plane, integrated over the energy range from 0.4 ∼ 1 meV,
measured at CNCS at 1.8 K in zero field. The magnetic scattering is greatly
suppressed for l = 0 and l = 2, and reaches a maximum intensity at l = 1. A
cut of the inelastic neutron scattering intensity along the (1.5, 1.5, l) direction
is shown in fig. 5.26b. This particular Q dependence is well described by the
following structure factor:

S(q) ∼ sin2 (lπ/2), (5.5)

as indicated by the red line. This expression results from an antiferromagnetic
coupling of the spins in the z = 0 and z = 1/2 planes. The modulation of
the inelastic scattering intensity along the (hh) direction is not as pronounced
as along the (00l). Part of the reason may be that the interactions in the
plane are not as significant as the interactions along the c axis. However,
we can see from fig. 5.26a that the scattering is peaked around the position
with (hh) = 0. Since this requires ferromagnetic coupling in the plane, it was
initially hard to understand this within the SSL dimer picture. According to
the recently solved magnetic structure in zero field, the coupled spins pairs
form a 5 × 5 ferromagnetic superlattice in the ab plane [230]. Energy slices
along the (h, h, 1.5), and the (1.5, 1.5, l) directions, measured at 1.8 K in zero
field, are shown in fig. 5.26c and fig. 5.26d, respectively. The dispersions in
both directions are not much different from the 0.1 K data shown earlier,
except that the scattering is more smeared than the 0.1 K data. Similar
Q dependencies of the energy slices along the (h, h, 1.5), and the (1.5, 1.5, l)
direction were seen for temperatures as high as 50 K, as shown in fig. 5.26e,
and fig. 5.26f. Since at T = 50 K, Curie-Weiss behaviors were always observed
in the magnetic susceptibility, and Yb local moments are fully recovered, one
would not expect to see any strong correlations at this high temperature range.
The only energy scale that could be comparable to this temperature is the
first CEF excitation energy ∆1 ≃ 70 K. One possible scenario is that for
all temperatures T < ∆1, the Yb ions are constrained to the Ising | ± 7/2⟩
ground states. These Ising spins pointing in the (110) and (1-10) directions
are aligned antiferromagnetically along the crystal c axis, and one has to
go to temperatures that are much larger than the energy scale ∆1 to really
compromise the pure Ising character of the ground doublet states.

A simplified illustration of the magnetic coupling of the Ising spins along
c are shown in fig. 5.27, corresponding to the two different possible spin
configurations in the ab plane (fig. 5.5). The Yb moments are pointing
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Figure 5.26: (a) Inelastic neutron scattering intensity from CNCS data in
the [H, H, L] scattering plane, integrated over the energy range [0.4, 1] meV.
(b) Wave vector cut of the inelastic neutron scattering intensity with E=[0.4-
1]meV along the (1.5, 1.5, l) direction. The red solid line is the fit to the
expression I ∼ sin2 (lπ/2). (c) Energy slice along the (h, h, 0) direction with
l integrated over the range [1.4, 1.6] at 1.8 K in zero fields. (d) Energy slice
along the (0, 0, l) direction with hh integrated over the range [1.4, 1.6] at 1.8
K in zero field. (e) Energy slice along the (h, h, 0) direction with l integrated
over the range [1.4, 1.6] at 50 K in zero field. (f) Energy slice along the (0, 0, l)
direction with hh integrated over the range [1.4, 1.6] at 50 K in zero field.
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Figure 5.27: A simplified illustration of the antiferromagnetic coupled Ising
spins along c axis. The moments are pointing along the diagonal direction
of the nearest neighbor pairs in (a), and are pointing perpendicular to the
direction of the nearest neighbor pairs in (b).

along the diagonal direction of the nearest neighbor pairs in fig. 5.27a, and
are pointing perpendicular to the direction of the nearest neighbor pairs in
fig. 5.27b. The real magnetic structure is much more complex in the ab plane
with a 5× 5 superlattice that gives the satellite peaks at q1 = (±0.2,±0.2, 0)
and q2 = (±0.2,∓0.2, 0) [230]. It was shown that the configuration in fig. 5.27b
gives better fits to the diffraction data [230]. However, in either case, the
interactions along the crystal c axis are always the same, while the Ising
spins are coupled antiferromagnetically into chains along the c direction. The
antiferromagnetic ordering at 2.0 K in zero field involves the locking together
of these chains in the ab plane.

According to what we have discussed earlier, the elementary excitations
for the one-dimensional antiferromagnetic coupled spin chains are spinons.
Shown in fig. 5.28a is the energy dispersion along the (0, 0, l) direction with
(hh) integrated over the range [0.05, 0.95]. We have folded all the intensity to
one Brillouin zone to improve the statistics of the data. The red dashed lines
are the fit to the spinon dispersion in chapter 1 (relation 1.54) with the upper
and lower bound as [52, 54]

Eupper = πJsin (
πq

2
) (5.6)

Elower =
πJ

2
sin (πq), (5.7)

with the antiferromagnetic coupling J∥c ≃ 0.38 meV along the c direction
inside the chain. A spinon excitation with much weaker intensity was also
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Figure 5.28: (a) Energy slice along the (0, 0, l) direction with (hh) integrated
over the range [0.05, 0.95] measured at 0.1 K in zero fields. (a) Energy slice
along the (0, 0, l) direction with (hh) integrated over the range [0.05, 0.95]
measured at 0.1 K in B = 4.0 T. The red dashed lines in (a) and (b) are the
fits to spinon expressions with J ≃ 0.38 meV. (c) Integrated intensity of one
entire Brillouin zone with (hh) = [0.05, 0.95], and l = [0, 2] for fields B = 0 T,
and B = 4 T at 0.1 K. (d) Integrated intensity from 0.2 meV to 2 meV. The
zero field inelastic intensity in one Brillouin zone is almost twice the inelastic
intensity of B = 4 T.
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observed at 0.1 K in B = 4.0 T, as shown in fig. 5.28b. The red dashed line
is the same fit as in fig. 5.28a. We have integrated the inelastic scattering
intensity of one entire Brillouin zone with (hh) = [0.05, 0.95], and l = [0, 2] for
fields B = 0 T, and B = 4 T at 0.1 K, as plotted in fig. 5.28c. A broad peak
was observed around the energy Ec ≃ 0.6 meV. Most interestingly, when we
integrate the intensity under this peak from energy of 0.2 meV to 2 meV, the
zero field inelastic intensity in one Brillouin zone is almost twice the inelastic
intensity found for B = 4 T, as shown in fig. 5.28d. This further confirms the
two sublattice model with orthogonal aligned spin chains or ladders. When
the magnetic field is applied along the diagonal (1, 1, 0) or (1, -1, 0) directions,
only one of the two sublattices is polarized in high fields, while the other one
is basically unaffected.

The expression we used above for the fitting of the spinon dispersion is
based on the model of 1D antiferromagnetically coupled isotropic Heisenberg
spins. For this model, the dispersion is always gapless at l = 0, and l = 1.
However, this is a little different from what we see, as shown in fig. 5.28a and
fig. 5.28b. This difference may result from the strong Ising character of the Yb
moments in Yb2Pt2Pb [56, 57]. However, the overall shape of the excitation
is still well described by this expression.

5.4 non-Fermi Liquid Behavior near the QCP

The spinon like excitations observed in the inelastic neutron scattering
experiments clearly demonstrate that the 1D model is more suitable for the
understanding of the peculiar properties of Yb2Pt2Pb , at least in zero field,
where the usual Fermi liquid is replaced by a Luttinger liquid. Two main
properties are related to the 1D Lutinger liquid [52, 53]. One is the presence
of the fractional excitations, such as spinons as discussed above [52, 53].
The other is the power law dependence of the correlation function, which
may be reflected in transport measurements, such as the linear temperature
dependence of the conductivity that is observed in the one dimensional
organic compounds [52, 58]. Since Yb2Pt2Pb is a good metal, the resistivity
measurements may help provide a better understanding of the physics in
Yb2Pt2Pb . Both the temperature and field dependent resistivity will be
discussed below.

Shown in fig. 5.29(a-f) is the temperature dependent resistivity ρc with
current along the crystal c axis measured in different fields (B ∥ 110) from 0
T to 5.0 T. The blue lines are the temperature derivatives of the resistivity
(dρ/dT ). The red vertical dashed lines indicate the two field independent
phase lines at 2 K and 0.8 K, shown in fig. 5.6. The most interesting thing
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is that the resistivity becomes linear in temperature at fields around 1.0 T
(fig. 5.29b) and 2.0 T(fig. 5.29c), but takes a stronger power-law in both lower
and higher fields. This is further explored in fig. 5.30. The temperature
dependent resistivity measured in different fields between 1.25 T and 2.25 T
is shown in fig. 5.30a. Linear resistivity was observed below 2.0 K for fields in
this range. Assuming the temperature dependent resistivity has the form

ρ = ρ0 + AT n, (5.8)

we calculate the power law exponent n via the logarithmic derivative

n = d(log (ρ− ρ0))/d(log T ). (5.9)

This exponent is shown in the contour plot in fig. 5.30b, and a large region
with n ≃ 1 was observed in the range of fields and temperatures around and
inside the dome phase region. Fermi liquid behavior with n ∼ 2 was recovered
in smaller and larger fields.

The field dependent resistivities from 0 T to 5.0 T at temperatures from 0.1
K to 2.0 K are shown in fig. 5.31. Steps are observed at 0.1 K, which resemble
the plateaux phases in the dc magnetization [67, 97]. We are interested in
the upper critical field boundary Bc ≃ 2.3 T and the dome phase region that
appears in the field range between 1.25 T and 2.3 T. Although the inelastic
neutron scattering experiments show that one dimensional physics is more
suitable than the singlet-triplet dimer picture for explaining the zero field
spinon excitations, we still do not known how important the SSL physics may
be for explaining field dependent properties such as the magnetic plateaux and
the domed phases.

For the picture of SSL dimers with a singlet-triplet gap ∆, a dome like
phase will appear between the critical field Bc1 and Bc2, where ∆ is suppressed
to zero by magnetic fields [61, 63, 231, 232]. Based on the broad maximum
shown in the temperature dependent magnetic susceptibility, it was established
in [67] that the field dependent gap ∆ approximately closes at about 1.6 T.
If stabilizing the dome phase requires the closure of the singlet-triplet gap,
as observed in the dimer compounds BaCuSi2O6 and TlCuCl3 [231, 232], the
critical points at Bc1 and Bc2 should fall into the BEC universality class with
T ≃ (B −Bc)

2/3. The phase boundary near the lower critical field Bc1 ≃ 1.25
T in Yb2Pt2Pb is complicated by proximity to other phase transitions, and we
focus on the upper critical field Bc1 T. This upper phase boundary appears
as a sharp peak in the field derivative of the magnetic resistivity, as shown in
fig. 5.32c. The upper critical field Bc2 that is extracted from this resistivity
measurement is about 2.4 T at 0.1 K, which could be traced to about 2.35
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Figure 5.29: (a-f)Temperature dependent resistivity measured in different
fields from 0 T to 5.0 T, as indicated. The blue lines are the temperature
derivatives of the resistivity (dρ/dT ). The red vertical dashed lines indicate
the two horizontal phase lines shown in fig. 5.6, which are shown here to be
independent of field.
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Figure 5.30: (a)Temperature dependent resistivity measured in different fields
between 1.25 T and 2.25 T as indicated. (b) Contour plot of the exponent n
over the field temperature phase diagram. Assuming that ρ = ρ0 +AT n, then
n = d(log (ρ− ρ0))/d(log T ).
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Figure 5.31: Field dependent resistivities at temperatures from 0.1 K to 2.0
K.

T at 0.6 K. From these data, the critical field Bc2 changed less than 0.05 T
when the temperature changed by 0.5 K. The overall phase boundary is more
like a vertical phase line as T → 0, B → Bc than the power law behavior
expected from the BEC scenario. Based on the Clausius-Clapeyron relation,
this vertical phase boundary suggests that the material is tuned to a first order
phase transition at Bc2. This observation suggests that the dome phase may
have a different origin than those seen in other dimer systems [231, 232].

Another peculiar property observed here is that the sharp peak in dρ/dB
at Bc2 can be traced to even higher temperatures, where it gradually evolves
into a broad minimum for T ≥ 0.7 K, as shown in fig. 5.32b and fig. 5.32c.
Phenomenologically, this is very similar to the T ∗ line observed in the Yb
based heavy fermion compound YbRh2Si2 near the AF-QCP [10, 31, 43]. We
have added this new energy scale found in Yb2Pt2Pb in fig. 5.34. The solid
stars below ∼0.7 K outline the real phase boundary, while only broad minima
were observed at fields and temperatures marked by empty stars. However,
it is still unclear what is the mechanism behind the new energy scale T ∗. We
have re-examined the temperature dependent magnetization in different fields
up to 4.0 T. We have plotted all the temperature dependent magnetization
shown in fig. 5.33a and fig. 5.33b as a function of B/T . If the new T ∗ line
results from inflection points in the entropy, caused by the Zeeman splitting
of the Yb ground doublet states, the magnetization in the paramagnetic state
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Figure 5.32: Field derivative of the measured resistivity at different
temperatures (a) 1.8 K < T < 6 K, (b) 0.7 K < T < 1.6 K, and (c) 0.1
K < T < 0.6 K. The red dashed line indicates the evolution of the sharp
anomaly at 2.3 T at 0.1 K to the broad anomaly at high temperatures.
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Figure 5.33: Temperature dependent magnetization measured in different
fields (a) B ≤ 1.8 T, (b) 2.3 T≤ B ≤ 4.0 T [Moosung Kim]. (c) The
temperature dependent magnetization as a function of B/T for different values
of B, as indicated. (d) Plot of the saturated moment (red) extracted from (c)
plotted with the measured magnetization at 0.1 K (black). [97]
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Figure 5.34: Temperature-field phase diagram of Yb2Pt2Pb . For simplicity,
the two horizontal phase lines are not presented in this phase diagram. The
red stars indicate the additional energy scale T ∗ extracted from the magnetic
field dependent resistivity. The solid stars below 0.7 K are the real phase
boundary, while the empty stars correspond to a broad minimum in the
resistivity, possibly a crossover.

201



should collapse to a scaling curve as function of B/T , just as we observed in
the local moment antiferromagnet Yb3Pt4 (fig. 3.16, Chapter 3). As shown in
fig. 5.33c, the magnetization curve of Yb2Pt2Pb does not scale as B/T , and
in addition, the saturation moment in the small field region is much smaller
than the value expected for the localized Ising-like Yb moments. Fig. 5.33d
is the plot of the saturation moments Ms extracted from fig. 5.33c with the
as measured magnetization at 0.1 K. We can see that Ms only recovers the
single ion moment for fields B ≥ 2.3 T. This indicates that Bc = 2.3 T is not
just a upper critical phase boundary of the dome phase, but it is also a true
critical field, above which Yb local moments are recovered. This critical field
may even extend to higher temperatures, separating the paramagnetic phase
into two different regions in the field-temperature phase space.

This new energy scale T ∗ that is observed around 2.3 T reminds us that
there is another very important aspect we have to consider, the heavy fermion
physics [67, 222]. The measured specific heat is greatly enhanced in the low
field antiferromagnetic state, where γ = C/T ≃ 311 mJ/mol K2 at B = 0 [67].
A sharp drop was observed in the value of γ near 2.3 T, and a Fermi liquid
state with γ ≃ 100mJ/mol K2 was recovered for fields B ≥ 2.3 T [67, 97].
Large values of γ are found in frustrated systems, including insulators and
also RB4 [233], however, it is not clear that if this is the origin of large γ
in Yb2Pt2Pb , or if the Kondo effect is important. The non-Fermi liquid
behaviors with linear temperature dependent resistivity near the domed phase
region could be taken as evidence for the presence of a Luttinger liquid or
quantum critical behavior as for heavy fermions. However, the key point is
that strong quantum fluctuations are present in this region near the AF-QCP,
where Fermi liquid theory breaks down.

5.5 Conclusion

In this Chapter, we have mainly discussed the results of neutron scattering
on Yb2Pt2Pb single crystals. Elastic neutron scattering data confirms the two
sublattice model with Yb Ising moments aligned along the orthogonal (110)
and (1-10) directions. Two sets of satellite peaks with propagation vectors
q1 = (±0.2,±0.2, 0) and q2 = (±0.2,∓0.2, 0) were found in the zero field
antiferromagnetic ordered state, indicating a 5×5 superlattice in the ab plane.
The propagation vector q1 is responsible for the field dependent order shown
in the B ∥ 110 phase diagram, corresponding to the sublattice with moments
parallel to the magnetic field, while the propagation vector q2 is responsible
for the field independent horizontal phase line at 2.0 K, corresponding to the
other sublattice with moments perpendicular to the applied field. The critical
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exponent β ≃ 0.12 suggests the zero field antiferromagnetic order belongs to
a 2D Ising universality class.

Yb ions form pairs that are arranged orthogonally in the ab plane,
resembling the frustrated SSL structure, where dimers with singlet-triplet
excitations are expected. However, inelastic neutron scattering data clarifies
that the interactions along the crystal c direction are the most important,
and the Yb Ising moments are aligned antiferromagnetically into chains or
ladders along the c direction. Spinon excitations were observed in zero field,
and interesting field dependent behaviors were observed.

With increasing fields, the antiferromagnetic order is suppressed to zero
temperature at a critical field of about 1.25 T. Above this field, a dome
like phase was observed that extends from ∼ 1.25 − 2.3 T. Non-Fermi liquid
behaviors with linear temperature dependent resistivity were observed in this
region, indicating the existence of strong quantum fluctuations. These critical
fluctuations could be driven by the 1D physics, where the domed phase
may be related to the Luttinger liquid phase. It is also possible that these
fluctuations are related to the field induced AF-QCP, as observed in heavy
fermion systems [10, 21]. A new energy scale was identified through the field
dependent resistivity measurements, which resembles the T ∗ line in YbRh2Si2
near the field induced AF-QCP [10, 31, 43]. However, it is still unclear that
whether this additional energy scale is driven by the Kondo effect or by the
low dimensional fluctuations.
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Chapter 6

Conclusions and Perspectives

Three systems were investigated in this thesis, through magnetic and
thermodynamic property measurements and neutron scattering experiments.
Our purpose is to develop a general understanding of the quantum phase
transitions and the associated quantum critical behaviors from different
aspects. We have explored the field induced critical end point in the local
moment antiferromagnet Yb3Pt4 in chapter 3, the quantum critical scaling
in the 3d electron compound YFe2Al10 in chapter 4, and the quantum
antiferromagnet Yb2Pt2Pb in chapter 5.

Compared to the numerous Ce-based heavy fermions that have been
studied since the 1970s, only a few Yb-based heavy fermion systems have been
well established. Most of the studies were based on the material YbRh2Si2.
Yb moments are almost delocalized in YbRh2Si2 at low temperatures, and
non-Fermi liquid behaviors induced by quantum critical fluctuations were
observed in the vicinity of the field induced AF-QCP. It was argued that
this AF-QCP in YbRh2Si2 does not fall into the Hertz-Millis theory of SDW-
type QCPs. An new energy scale T ∗ related to the delocalization of f
moments was observed at the QCP. In this ’local’ Kondo-breakdown type QCP,
additional quantum fluctuations are expected besides the order parameter
fluctuation of the magnetic phase transition itself. Our initial interest is
that how much this QCP would be modified if a localized Yb system was
tuned in the same way to a critical point. Yb3Pt4 is such a system with well
localized moments. Since the magnetic ordering temperature is low (TN = 2.4
K), experimentally it could be easily suppressed by magnetic field at about
1.9 T. Based on our thermal property measurements, a field-temperature
phase diagram was established, and a continuous phase line was found for
temperature approaching zero. Questions we have then were: Is this also a
QCP as found in YbRh2Si2? Is the delocalization of moments necessary for the
observation of those anomalous critical behaviors? However, in Yb3Pt4, the
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magnetoresistivity indicates that nFL behavior was not observed at the critical
point, and no heavy fermion behavior, such as the enhancement of effective
electron masses, was observed in the specific heat and magnetic susceptibility.
This suggests that the fluctuations from the delocalization-localization of the
f electrons may be responsible for the observed quantum critical behaviors
in YbRh2Si2, which is absent in Yb3Pt4. In addition, our elastic neutron
scattering study on the magnetic order parameter indicates that Yb3Pt4 was
actually tuned to a first order phase transition at TN = 0. Combining the
magnetization and MCE, we have shown that Yb3Pt4 was tuned to a critical
end point (CEP) at T = 0. We believe what we observed in Yb3Pt4 can be
generalized to other local moment systems as they are tuned to the critical
point by magnetic fields, and the critical point can be unified to a global
phase diagram with a metamagnetic critical point, as we shown in fig. 3.21.
The lack of quantum critical fluctuations near the field induced critical point
in Yb3Pt4 can also be understood from the point of view of quantum critical
scaling. Since the Yb moments are always localized, and no delocalization-
localization like transition of the 4f electrons is involved at the critical point
in Yb3Pt4, all the critical fluctuations, if they exist, are from the fluctuations
of the order parameter only. However, the zero field antiferromagnetic order
of Yb3Pt4 is three dimensional (d = 3) with Heisenberg like spins, thus, as
it was tuned to the TN = 0 QCP, the effective dimension would increase to
deff = d + z > 4, which would be greater than the upper critical dimension.
So it is actually not surprising that the critical fluctuations are cut off in this
case, and only classical local moment behaviors were observed overall the phase
diagram besides the antiferromagnetic order as shown in fig. 3.16 and fig. 3.17.

Most of the studies of quantum criticality are established in f -electron
based heavy fermions, and the observation and description of the quantum
critical behaviors in magnetic systems driven by d electrons are very limited.
As we discussed in chapter 4, YFe2Al10 is a rare compound that could serve as a
valuable bridge between the study of the quantum criticality in f -electron and
the stoichiometric d-electron systems. Non-Fermi liquid behaviors with strong
divergencies in magnetic susceptibility (χ ∼ T−1.4) and magnetic specific
heat (CM/T ∼ −log T ) were observed in YFe2Al10 in zero field. A ’naive’
scaling of magnetic susceptibility (dχ/dT = B−1.4ϕ(T/B0.6)) and specific heat
(∆CM/T = φ(T/B0.6)) that assumes the existence of hyperscaling is fully
established, indicating a QCP locating at T = 0, and B = 0. The T/B0.6

scaling suggests that there is no fixed energy scale when the system is tuned
to the QCP, and the free energy is only dependent on the relative distance in
parameter space from the QCP. Fermi liquid behavior is restored in the high
field limit as the system was tuned far from the QCP. A scaling function of the
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singular part of the free energy was proposed, which explains all the measured
thermal properties in a self-consistent way. Detailed scaling analysis indicates
that the spatial dimension d is equal to the dynamical exponent z (d = z). No
static order has been observed down to 0.1 K and thus it is hard to determine
the nature of the QCP and the exact values of the dimension d. However,
the strong anisotropy between the ac plane and the b axis indicates that the
critical fluctuations may be two dimensional with d ≤ 2. The validation of
the hyperscaling suggests that the effective dimension may be in the range of
1 < deff = d + z ≤ 4. Based on the scaling analysis, the QCP in YFe2Al10
does not follow the Hertz-Millis picture for itinerant FM-QCP or AF-QCP. One
possible scenario is that this system is located close to an itinerant-localization
like transition, such as a metal-insulator transition, and the divergence in
magnetic susceptibility is thus induced by the formation of localized moments.
A lot of interest has been attracted to the isostructural compounds CeRu2Al10,
and CeFe2Al10 [238, 239, 240, 241]. No magnetic ordering was observed
in the compound CeFe2Al10, and a semiconducating resistivity was observed
below about 100 K [238, 239, 240, 241]. Antiferromagnetic order has been
observed at TN ≃ 27 K in CeRu2Al10. Considering that the nearest neighbor
distance between Ce ions is more than 5Å, this antiferromagnetic ordering
temperature is extremely high considering that it maybe mediated by the
RKKY exchange interaction [238, 239, 240, 241]. Although the Ce 4f -
electrons are responsible for this magnetic ordering, the driving mechanism
is still under debate. Strong anisotropy between the ac plane and the b
axis has been observed in CeRu2Al10 and CeFe2Al10, which is similar to that
observed in YFe2Al10, and it was proposed that a charge density wave (CDW)
instability of the electronic background may drive the magnetic ordering of the
f electrons [242]. It thus will be very interesting to see whether this scenario
applies to the critical behavior observed in YFe2Al10, since they share a very
similar electron environment. Future work is needed to verify this hypothesis.

Yb2Pt2Pb is a quantum antiferromagnet that orders at TN = 2.07 K
in zero field. The Yb ions in the ab plane crystallize into pairs that are
arranged orthogonally to each other, which is equivalent to the 2D Shastry-
Sutherland lattice (SSL). At low temperatures, the Yb ground doublet states of
Jz = ± | 7/2⟩ are well separated from the excited states, producing a pseudo-
spin S = 1/2 state with the Yb Ising moments pointing along the crystal (110)
and (1-10) directions. We have focused on exploring the magnetic properties of
Yb2Pt2Pb using elastic and inelastic neutron scattering experiments of aligned
single crystals in this thesis in chapter 5. Elastic neutron diffraction confirms
the two sublattice model of the magnetic structure. With magnetic field
applied along the (110) direction, only one of the two sublattices with moments
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along the field direction is polarized, while the other one with moments
perpendicular to the field is not affected, which explains the field independent
horizontal phase lines shown in fig. 5.6. The most interesting behaviors come
from the inelastic neutron scattering results. In contrast to the expectation
of the two dimensional physics of SSL in the ab plane, spinon like excitations
with broad continuum which disperse along the (00l) direction were observed,
indicating that the interactions along the crystal c axis are actually very
important. Based on the newly solved magnetic structure in zero field [230]
and the dynamical structure factor of the neutron scattering intensity, we
propose that the Yb Ising moments may be coupled antiferromagnetically into
chains or ladders along the crystal c direction, and the zero field magnetic
order at TN ≃ 2.07 K corresponds to the ordering among the coupled chains
or ladders. The spinon dispersion has been fit to the one dimensional model
of antiferromagnetically coupled isotropic Heisenberg spins half (s = 1/2)
chains, which gives an interaction along the c axis J∥c ≃ 0.38 meV. In contrast
to the first two compounds, Yb3Pt4 and YFe2Al10, Yb2Pt2Pb is dominated
by the one-dimensional Luttinger liquid physics. The magnetic properties
of Yb2Pt2Pb with magnetic fields are also very interesting. A dome phase
emerges in the vicinity of the antiferromagnetic QCP in ∼ 1.25 T and it
extends to the upper critical field of ∼ 2.3 T. The phase boundary of the
dome phase does not correspond to the dimer model with a BEC state.
Non-Fermi liquid behaviors with linear temperature dependent resistivity
were observed in a wide field and temperature range around and inside the
dome phase, indicating that strong quantum critical fluctuations exist in this
region. A new energy scale or T ∗ line was observed in the field derivative
of the magnetoresistivity, which originates from 2.3 T, and extends to higher
temperatures up to ∼ 10 K in fields. Phenomenologically, this T ∗ line is
similar to what observed in the heavy fermion system YbRh2Si2 at the field
induced AF-QCP. Although a great enhancement of the Sommerfeld constant
was observed in the field dependent specific heat, there is not enough evidence
in Yb2Pt2Pb that Kondo effect is sufficient to drive these critical fluctuations.
Another scenario is that the one dimensional physics fully accounts for the field
induced physics and the emergent dome phase. The region bounded between
1.25 T and 2.3 T with significant non-Fermi liquid behavior in the temperature
dependent resistivity established in fig. 5.6 then can be understood as a
Luttinger liquid phase, as observed in the weakly coupled spin ladder system
CuBr4(C5H12N)2 (BPCB) [235, 236, 237]. Thus the T ∗ line extends from the
upper critical field 2.3 T is the crossover above which the Luttinger liquid
phase is suppressed to a polarized moment state. However, a detailed analysis
of the neutron scattering data and the thermodynamical properties such as
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specific heat and MCE is needed to clarify this scenario. Up to now, all we
have studied is with field in the ab plane (110) or (1-10) directions, and since
the Ising moment is also confined in these orthogonal directions, the magnetic
field acts as a chemical potential for the Ising spins. However, it will also be
interesting to have high field measurements along the crystal c direction. In
that case, the field is perpendicular to the Ising spin, and the magnetic field
induced critical point will correspond to the model of the one dimensional
Ising spin chain in transverse field, where a different universality class of the
QCP may be expected.

In conclusion, we have studied three different materials in this thesis.
Although they behave very differently from each other, the overall quantum
critical physics can be understood in a united way. For Yb3Pt4, the effective
dimension of the field induced critical point is above the upper dimension, and
so the critical fluctuations are very weak. For YFe2Al10, the self-consistent
quantum critical scaling indicates an effective dimension 1 < deff = d+ z ≤ 4,
and hence quantum critical fluctuations are very strong. The most interesting
properties were observed in Yb2Pt2Pb, where the one dimensional (1D)
Luttinger liquid physics are dominant. Fermi liquid physics broke down in
both YFe2Al10 and Yb2Pt2Pb where the quantum fluctuations are significant.
Although the non-Fermi liquid behaviors in YFe2Al10 are believed to be driven
by the B = 0, T = 0 QCP, while the quantum fluctuations in Yb2Pt2Pb
are driven by the low dimensionality, they are all related to the quantum
critical physics in a particular way. These studies enable us to have a more
comprehensive view of the quantum phase transitions and quantum criticality.
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