1. A classical particle of mass m moves within a part of the $x - y$ plane $z = 0$ of area A, and is attracted to it by the gravitational force mg, i.e., potential energy $V(z)$ in the z-direction (orthogonal to the plane) is

$$V(z) = \begin{cases} mgz, & z > 0, \\ +\infty, & z < 0. \end{cases}$$

Assuming that the particle is in equilibrium at temperature T, find its internal energy E and the entropy S.

2. A single-particle level of energy ϵ is in equilibrium with a reservoir of effectively non-interacting electrons with temperature T and chemical potential μ. Find the standard deviation σ of the number of particles N in this level.

3. Calculate the heat capacity C_L per unit length L of a one-dimensional equilibrium gas of photons ("blackbody radiation") at temperature T.