Nuclear Physics I

Physics 551

Spring 2005

Instructor: Norbert Pietralla
(office: Physics C-112, (631) 632-8119, Norbert.Pietralla@stonybrook.edu)

Lectures: Mondays, Wednesdays, Fridays 11:45 - 12:40
Room P-123
First meeting: Jan 24

Topics:

I. Basic Concepts
 Units, sizes, conventions, nuclear chart, cross section, brief history
 and prospectives

II. Nucleon Structure
 Elementary particles and forces, overview over the basic hadrons,
 isospin, parity

III. Deuteron and Nuclear Force
 two-nucleon systems, scattering, properties of the deuteron, prop-
 erties of the nuclear force, meson-exchange model

IV. Nuclear Properties
 Radii, density, mass formula, binding energy, separation energies,
 drip lines, fission, ground state spin, magnetic dipole moments of
 odd-mass nuclei, independent-particle shell model, magic num-
 bers

V. Nuclear Astrophysics
 Stellar energy production, nucleosynthesis, hydrogen burning,
 CNO-cycle, solar neutrino problem, neutrino oscillations, nuclear
 physics of supernovae and neutron stars

VI. Electroweak decay processes
 Transition rates, Fermi’s golden rule, γ-decay, Weisskopf units
 and collectivity, β-decay, isospin mixing, parity violation
VII. Nuclear collective motion
 Geometrical model, vibrations, giant resonances, rotations, deformation phase transitions, interacting boson model

VIII. Microscopic nuclear structure models
 Many-body basis states, mean field, Tamm-Dancoff approximation, random phase approximation, pairing, interacting shell model, Nilsson model

IX. Nuclear reactions
 Nuclear resonance fluorescence, Coulomb excitation, compound nucleus formation, direct reaction, optical model, scattering

X. Accelerators
 Electrostatic accelerators, cyclotrons, synchrotrons, storage rings, \(\gamma \)-ray sources, linear accelerators, visit of the Stony Brook TANDEM-LINAC ion-beam accelerator

XI. Detectors and counting statistics
 Interaction of radiation with matter, stopping power, gas-filled counters, scintillators, semiconductor detectors, energy measurements, mean value and variance, background, coincidence measurements, angular correlations, measurement of nuclear level lifetimes

XII. and Nuclear Physics II:
 Contemporary topics in nuclear physics research

Grading: 20% mid-term exam, 30% final exam, 50% homework

last updated 1/10/2005