28d) Invariant tensors

Transformation of g

\[g_{\mu' \nu}' = L_{\mu}^{\ \mu'} L_{\nu}^{\ \nu'} g_{\mu \nu} = (L g L^T)_{\mu' \nu}' \]

\[L^T g L = g \implies L = g L^{-1} g \]

\[L g L^T = L g g L^{-1} g = g \implies g \text{ is invariant} \]

\[\delta_{\mu' \nu}' g_{\mu' \nu}' g_{\mu' \nu}' \text{ is invariant} \]

If a tensor is symmetric in one frame, it is symmetric in all frames.

\[A'_{\mu' \nu}' = L_{\mu}^{\ \mu'} L_{\nu}^{\ \nu'} A_{\mu' \nu}' \]
\[= L_{\nu}^{\ \nu'} L_{\mu}^{\ \mu'} A_{\mu' \nu}' \]
\[= L_{\mu}^{\ \mu'} L_{\nu}^{\ \nu'} A_{\mu' \nu}' = A_{\mu' \nu}' \]

frame change

\[A_{\mu \nu} = - A_{\nu \mu} \implies A'_{\mu' \nu}' = - A'_{\nu' \mu}' \]

$A_{\mu \nu}$ is tensor of rank 2

$A_{\mu \nu}$ ν μ μ ν ν μ

antisymmetry or symmetry in each pair of indices is preserved