Invariant cross section

\[\dot{v}_1, \dot{v}_2, \dot{v}_3 \]

\[\rightarrow \]

\[\rightarrow \]

\[\eta_1, \eta_2 \]

\[\vec{v}_{\text{ree}} = \vec{v}_1 - \vec{v}_2 + \text{rel. corr.} \]

in rest frame of 2

\[\vec{v}_{\text{ree}} = \vec{v}_1 \]

number of collisions in volume \(dV \) in time \(dt \)
in the rest frame of 2 is

\[d\nu = \sigma \vec{v}_{\text{ree}} n_1 n_2 \ dV \ dt \]

\[\text{Green} \ is \ the \ number \ of \ incoming \ particles \]
per unit area per unit time

\[n_2 \ dV \] is the number of 2 particles
in \(dV \)

\[\sigma \] is the cross-section per particle

- \(d\nu \) is invariant because each collision is a physical event

We will reformulate \(d\nu \) in an invariant way by expressing \(d\nu \) in terms of invariants

\[d\nu dt \] is invariant

so we have to express \(\sigma \vec{v}_{\text{ree}} n_1 n_2 \) in invariants