Extreme relativistic

\[E_2 = \gamma E_2^{NR} \text{ for } 1 < \frac{v}{c} \leq \frac{\sqrt{5}}{8} \]

\[E_1 = \frac{q}{c} \text{ for } v = \frac{c}{8} \]

\[v = 0 \quad \frac{v}{c} = 1 \]

3b Action of an em field

a) \[S = S^\text{f} + S^\text{m} + S^\text{mp} \]

\[\text{action of free particle} \quad \text{action of fields} \quad \text{action of particle in a field} \]

E.g.: superposition principle

\[= \text{e.g. of motion are linear in fields} \]

\[= \text{S is quadratic in fields} \]

\[S = \int d^4x L \quad \text{Lagrangian density} \]

\(L \) should be a Lorentz scalar

\[\text{tensors } A^\mu, J^\mu, F^{\mu\nu}, F^{\mu\nu} \]

\[L = a F^{\mu\nu} F_{\mu\nu} + b A^\mu J^\mu + c F_{\mu\nu} F^{\mu\nu} \]