a) Use of Green's Function

Suppose that we know \(G(\vec{r}, \vec{r}') \) for a conducting surface \(S_c \) and \(S_b \) with given charge \(\phi_{c,1} = 0 \) and \(Q_{bc} = 0 \).

Conducting surface

Then we know the potential for arbitrary \(\phi_{c,1} \) and charge density \(\rho \).

Proof

Consider \(\Sigma \int_{S_c} \left[G(\vec{r}, \vec{r}') \nabla \cdot \chi(\vec{r}') - \nabla G(\vec{r}, \vec{r}') \cdot \nabla \chi(\vec{r}') \right] d\vec{s}' \)\d\vec{s}' // \text{ inward normal}

on \(S_c \) \(G(\vec{r}, \vec{r}') = 0 \)

on \(S_b \) \(\int_{S_b} \nabla G(\vec{r}, \vec{r}') \cdot \chi(\vec{r}') \ d\vec{s}' \)

\[= -\phi_c \int_{V} \nabla \cdot G(\vec{r}, \vec{r}') \ dV \]

\[= -\frac{1}{4\pi} \phi_c Q_c \]

and vanishes at surface

on \(S_c \) \(\int_{S_c} \nabla G(\vec{r}, \vec{r}') \cdot \chi(\vec{r}') \ d\vec{s}' \)

\[= -\frac{1}{4\pi} \phi_c Q_c \]

\(\text{ minus sign cancels because of inward normal} \)

on \(S_b \) \(\int_{S_b} G(\vec{r}, \vec{r}') \nabla \cdot \chi(\vec{r}') \ d\vec{s}', \)

\[= \phi_c(\vec{r}) \left(-\int_{V} \nabla \cdot \chi(\vec{r}') \ dV \right) \]